ibaLogic-V4

Manual

Issue 4.2.4

Measurement and Automation Systems

Manufacturer
iba AG

Koenigswarterstr. 44
90762 Fuerth

Germany

Contacts

Main office +49 911 97282-0
Fax +49 911 97282-33
Support +49 911 97282-14
Engineering +49 911 97282-13
E-Mail iba@iba-ag.com
Web www.iba-ag.com

This manual must not be circulated or copied, or its contents utilized and disseminated,
without our express written permission. Any breach or infringement of this provision will
result in liability for damages.

©iba AG 2013, All Rights Reserved

The content of this publication has been checked for compliance with the described
hardware and software. Nevertheless, deviations cannot be excluded completely so
that the full compliance is not guaranteed. However, the information in this publication
is updated regularly. Required corrections are contained in the following regulations or
can be downloaded on the Internet.

The current version is available for download on our web site http://www.iba-ag.com.

Protection note

Windows® is a label and registered trademark of the Microsoft Corporation. Other
product and company names mentioned in this manual can be labels or registered
trademarks of the corresponding owners.

Issue | Date | Revision |Author |Version SW

424 |19.02.2013 | Update Software | KF |4.2.4

ibaLogic-V4 Manual

Table of Contents
About this Mmanual............. 1"
1.1 L2 1 = 01U o PP 11
1.2 NOTALIONS ... 11
1.3 USEA SYMDOIS.... .o e e e e eeaena 12
INErodUCEION ... e 13
2.1 IdentifiCatioNoeeeeeeeeeeeeeee e 13
2.2 [o] 0 1= G Y= PP PPPPRPPPPPP 13
2.3 REIEASE NOLESooviiiiiiiiiiiiieiieee ettt aaesaaaenessnansnnnsnnnnnnns 13
2.3.1 Change Log File......cooeeeeee e 13
Software Installation ... e 14
3.1 System ReqUIrEMENTSooiiiiiiiii e 14
3.1.1 L P2 10 = PSPPSRI 14
312 SORWAIE ... 15
3.2 License ACHIVALIONoooiiiiiiiiie et 16
3.3 Software Installationoooo oo 17
3.3.1 (Y (=T o 81T (= SRR 17
TR T o o Yo =T o U = 17
3.3.3 SOftWare reqUIred...........ooovieeiiiiiieeee e 18
3.3.4 System reqUIrEMENTSuuuuiiiiiiiiiiiiii e 19
TR T T O o To Yo T-T W oo o 0] o To] 1 1=T 0 TP 20
3.3.6 Choose Installation LoCationccuuiiiiiiiiiiiiiiiiee e 21
3.3.7 SeleCt SQL SEIVET ...t e a e 21
3.3.8 Complete ibaLogic installationeeuiiiiiiiiiiiiiiiees 23
IbaLogic SOftWare ... ——————— 24
4.1 [a1 (e Te 18 o1 1o o HUU 24
4.2 Areas of Application ... 25
4.3 The ibalogic COMPONENTEScccooviiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 27
4.3.1 Runtime System (PMAQC).........uuiiiiiiiiiiiiiiiiiiiiiiiiieseeaesansennsennnnne 28
4.3.2 IDALOGIC SEIVET ...t 28
i G TR B | oY= | Mo T | [o 3 O 1 =Y o | SRR 28
R O] O3 T o= R 28
4.4 Multi-client Operation and other System Configurations..............ccccvvvvvvvvinnn, 29
4.5 Operating and Processing Modes..........ccoooeoiiiiiiiii 31
4.6 Structure of an ibalLogic applicationcccoooeeiiiiiiiiii 32
4.6.1 Task/ Program Properti€s........ccooueieooiiiiiiie e, 32
4.6.2 Program Elementsuuiiiiiiiiii e 33
4.6.2.1 FUNCHON DIOCKS... ...t e e e e e e e e e e e nnanee e e e e e e e e nnnns 33

i85 Issue 4.2.4 i

Manual ibaLogic-V4

4.6.2.2 GraphiCs ProgramimMingcocueeeeiiiiieeiiiiee e eeieeeeesieeeesstaeeeesteeeesssseeeeesssseeeesanseeaasans 34
T2 T ©7o o 4]0 0= o1 USSR 34
4.6.2.4 Datatypes availabIe...........ccooiiiiiiiiiiie e a e 34
4.6.2.5 Integrated measurement using iDaPDA EXPreSS........ccoiiiiiiiiiiiiiieiiiiiee i 35
4.6.2.6 Measured value STOrageccuuieiiiieii it a e 35
4.7 (070] 0] 0 =T o1 11V, 1 /RSOOSR 36
IDALOQGIC SEIVer..... . ——————— 37
5.1 Functional overview of the ibalLogic Serverccccciiiiiie, 37
5.2 Start iIDalogiC SEIVET.......cooiiiiiiiie e 38
5.3 User Interface — ibalogiC SEIVEr ... 40
5.4 ibalogiC Server Setling.......oooviiiiiiiiiiiiieeeeeeeeeeeeeee e ——————— 41
5.4.1 Configuring the Client POrt ... 41
5.4.2 Configuring the Database Connectionscccccc 42
5421 Connect database ... 42
5.4.2.2 Configuring the Database Interfacecccooovviiiiiiii e 44
5.4.2.3 SEIECE SQIL SEIVETcii ittt ettt e e e e s e e e et e e e e st e e e e nnteeeeeennaeeeeennes 45
5.4.2.4 Manage Database SCriptScooiiiiiiiiiii e 46
543 OPtONS .o 47
5.4.3.1 Activate AULOSTArt SEIVEToov oo 47
5.4.3.2 Configure General ibalLogic Server OptionS.........cccceviciireiiiiiie e 49
5.4.3.3 Settings for the Local PMACo 50
L S - 4 o (U =T [PRSP 52
544 SHAtUS D& ... 53
Programming Environment — ibaLogic Client........ccccccccceiiiiiiimirieeeecciiiniennns 54
6.1 Start ibalogic ClENt..........oveiiieiiiieeeeee . 54
6.2 User Interface of Programming Environment — Editor.................................... 55
6.2.1 MenU Bar ... 55
6.2.2 TOOIDAI ... 55
6.2.3 NaVIQation Ar€a.......ccoieiiiiiii e aaae 56
6.2.3.1 Switch Views in Workspace EXPIOrerooo oo 57
I N | 1 = | g (o RS 58
6.2.3.3 DEfiNIIONSeeiiiiiiiie et r e e a e e nrae e e e enees 59
6.2.3.4 HICIarCRY et 60
6.2.3.5 EVAIUAHON OFGETooiiiiiiiii it 60
6.2.4 Program DeSIgNer........cuuiuiiii it e e e e e e e e e e anae 62
6.2.5 Arrangement of the Tabs and Programming Windows..............cccceeeeiiriinnee. 63
6.2.5.1 Arrange tabsueiiiii e 63
6.2.5.2 Arrange programming WINAOWScooiiiiiiiiiiiiiieiae e iieieeee e e e s e aebeeeeeea e e e e enneeeeeas 63
6.2.5.3 Navigating in the Program DesSigner...........coocuiiiiiiiie e 65
6.2.6 Synchronize Access (<Read write>/<Read only> buttons).................cccuuuee. 68
6.2.7 Events WINdOW ..o 68
0 A B o o= | Y=Y o £SO 69
B.2.7.2 SEIVEI EVENIS ... a e e e e e e e e e 69
B.2.7.3 Al EVENTS ..ot e nnnee s 69
B.2.7.4 CONSOIE VIBWeeieiiiiie ettt e e e e e s e e e e e e e e st e e e e e e e s sannenaeeeaeeeeeannennnees 69

Issue 4.2.4 m

ibaLogic-V4 Manual
6.3 WOIKSPACE ..., 70
6.3.1 Create WOrKSPACEccooeeieeee e 70
R I @ T 1=T Y0 1] o= o = YR 71
6.3.3 Close Opened WOIrKSPACEuuururirurrriiiiiiiiiniineiuneennneenneennnnnneenneennnnnnnnnnnnnn. 71
6.3.4 Remove Workspace from the Databasecccccvueeiiiiiiiiiiiiiiiiiiiiiines 72
6.4 WOrKSpace ProjectSoeeiiiiiiiiii e 73
6.4.1 Create PrOJECEuiiiiiiiiiiiiii e ——————————————— 73
6.4.2 SetProjeCt @S ACHVEuuviiiiiiiiiiiiiiiiiii e —————————————— 74
6.4.3 Load Project in the Program DesSigner...............uuuiuuiiiieiimiiiiiiiiiiiiiiieiinenineennes 75
6.4.4 Edit ProjeCt Properties uuieueiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeneeeeeeeeeeeeeeenes 75
6.4.5 RemMOVE PrOJECH.......uuiiiiiiiiiiiii e 75
6.5 TasKS/Programscoooiiiiiiicc e 76
6.5.1 Create Tasks / ProgramsS..........ccuuiieiiiiiiiiiiiiieiee et 76
6.5.2 Open TaskS/Program ... 77
6.5.3 Change Task / Program PropertieScccccuuvviuuiuriimiriiiiiiiiiiieiinnieeneennennnnnn. 77
6.5.4 Remove Task / Program.........oo it 78
6.5.5 Import / EXPOrt Programsuueuuuiuueiiuiiiiiiiiiiiieiiiniiineneeeeeeeeeennennes 78
6.6 Configure Inputs and OUIPULScooeeeiiee e 80
6.6.1 Create SigNalS..........uuuuiuiiiiiiiii e 81
Gt I I 1Y 1 U= 1 o o J S 81
6.6.2 DEfiNE SIGNQAISeviiiiiiiiiiiiiiiiiiiiiiii i ——————————————————————— 82
6.6.3 Edit EXiSting SigNalS...........uuuiiiiiiiiiiiiiiiiiiiiii e 84
6.6.4 RemMOVE SIgNalS ... 84
6.6.5 EXport/ IMport SignalS...........uuuuuuiiiuiiiiiiiiiiiii e ——————————— 86
6.6.6 Using Signals in the Program.................uuuiuiiiiiiiiiiiiiiiiiiiiinieni—.. 88
6.6.7 Remove Signals in the Program ... 89
7 Program Creation..........ccccciiiiiiiinnnin s 90
71 [oo & T 90
711 USING BIOCKS ...ttt e e e 91
7.1.2 Create USEr BIOCKScoiiiiiiiiiiieiee ettt e e e e 92
% I B 1 g L= o o To | =T o TR 92
7.1.2.2 UNAEr the PrOJECT ... oot 92
7.1.2.3 Inthe Global LIDIarycooi ittt s e e e e e e anaeee s 92
4% IR T Y/ = g = To [o =1 oY L T 93
400 I T ¢ o Yo 1] To [=] o2 << 00 93
715 IMPOrting BIOCKS.uuuiiiiiiiiiiiiiiiiiii s 94
716 RemMOVING BIOCKScuuiiiiiiiiiiiiiiiiiiiiiiiiiieiiieie e 95
7.2 StaNdard BIOCKSceeiiiiieeee e 96
7.3 Complex FUNCtion BIOCKS........ccoooeiiieieee e, 96
7.3.1 DAT_FILE_WRITE (DFW Function BIOCK)..........ccoiiiiiiiiiiiieieeiiieeeeee e 96
7.3.1.1 Function BIOCK Edit DFW....coooi ittt e e 96
7.3.1.2 "General Configuration" Sub-tabcooiiiiiiiii 98
7.3.1.3 Sub-tab "Signal configuration”..............ccccoi it 102
7.3.1.4 Generate Storage StrUCUIeoii i e 104
i85 Issue 4.2.4 i

Manual ibaLogic-V4

7.3.2

7.3.21
7.3.2.2
7.3.3

7.3.3.1
7.3.3.2
7.3.3.3
7.3.34
7.3.3.5
7.3.3.6
7.3.3.7
7.3.4

7.3.41
7.3.4.2
7.34.3
7.3.5

7.3.5.1
7.3.5.2

7.4
7.4.1
7411
7.4.2
7421
7422
7423
7424
74.2.5
74.2.6
743
7.4.3.1
7432
7433
7434
7.4.4
74.41
7442
7443

7.5

7.5.1

7.5.1.1
7.5.1.2
7513

752
7.5.3
754
7.5.5
7.5.6
7.5.7

TCPIP_SENDREQCV ... 105
10T 010 PO PRPPPR 106
(O 1] 010 TSP ERURRROPP 107
PIDTT_CONTROL ...ttt e e e e e e e e e e e e e 107
T 11 USSR 109
L0 11 01U £ USRS 109
Details / SIgnal treNdSooiiiiiiiie e 110
P component: (Parameter: KP, EN_P)oooiii e 111
| component: (Parameters KP, TN, SET, SV, Hland EN_I)......cc...ccooiiiiiniininn, 112
DT1 component: (Parameters KV, T1 and EN_D) ..o, 113
PIDT1 component — Total rESPONSEccuuviiiiiiee et 115
RAMP ... 116
10T 010 PO PRPPPR 117
L 111 o 11 7SR 117
e T o 1] o = PRSPPI 118
FUZZY _CONTROLLER ...ttt 120
1] o UL PR PPRRPRRIN 121
(O 1] 010 TSP ERURRROPP 121
User-specific Function BIOCKS ..., 123
FUunction BIOCKS.......coooiiieeeeee 123
GENEral SEHINGS ...coiiiiiiiie e 124
Structured TeXt EItOr..... ... e 127
INEITISENSE ...ttt e anns 128
Syntax Description of Structured TexXtcoociiiiiiiii e 128
L0 01=T =1 (o] SR 129
R = 1 (=Y 0 1Y o] £ SRR 129
(7] =] r=] 1 £ SRR 131
110 SRS 132
MaACIO DIOCK. 133
Creating @ Macro BIOCK..........coouiuiiiiiiei e 133
100 1=Y o1 gTo Je= 1Y, - Vo o TSRS 134
Combining existing components into a Macro BIOCK ... 134
Expanding @ Macro BIOCKooiiiiiiiiiiee et 135
Creating your OWN DLLScooiviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 136
Source Files and Descriptions Requiredcccooveeiiiiiiiiiieie e 137
Requirements and NOES ... 137
Integrating the DLL into ibalogiC........cc.uviiiiiiieiieeceeee e 137
= = T 4 1= T RPN 139
Define Data TYPE ...ccooeeeeeeeeee e 139
Under the Project 141
IN the global IBraryooo e 141
When creating @ FUNCtioN BIOCKoooiiiiiiiiiiiiicee e 141
MOdify Data TYPE ...ccoeiiiiiieieeeee e 142
Delete Data TYPE .ooooeieeee e 142
Manage Data TYPE....oocceeiie i 142
EXport Data TYPE .ccooeeeeeeeeeeee e 143
IMport Data TYPe.....coo e 144
U LY BT = T Y/ o1 144

Issue 4.2.4 m

ibaLogic-V4 Manual
7.5.7.1 During the Creation of a Function BIOCK...........c..ccuviiiiiiiiiie e 144
7.5.7.2 During the Creation of a Structure Data TYpecovviiiiiiiii e 144
7.5.8 User-defined Data TYPESccouuiiiiiiiiiie e 144
7.5.8.1 DIRECT DERIVED TYPE GrOUP.....cuttiiiiieiiiieiiiiiieea e e sesieeeeea e e e aesenreeeeeeaeessennnneneeees 145
7.5.8.2 SUBRANGE TYPE GrOUPccttiiiiiiieiiiiiteesitieeeasiteeaessnteeessnteeessnsseeaesansseesssnsseeessnnees 145
7.5.8.3 STRING DERIVED TYPE GFrOUPeueeeiiaiaiiiiiiiiee e e e e e e e aeeeeee e e e e e e e e 145
7.5.84 ENUM TYPE GrOUP.....cuiiiiiiiiiieiiiiieeaiitie e sitte e e e itee e e st e e s st e e s e naaeaeannneeeeesnseeesenees 146
7.5.8.5 ARRAY TYPE GrOUD ... ittt e e e e e e e e e e e e e e e nnneeee 148
7.5.8.6 STRUCT TYPE GIrOUP....ucuteiiiiieeeiaiiitiiiietaeeesasasieeeeeeaessssanssseeeeaaesssaaasssseneeeaesssaaassnsees 149
8 Program Elements ... e s s e 151
8.1 Create Program EI€mMeENteiicceceeeececcee e 151
8.2 Mark Program EIementscooi i 151
8.3 Move Program Element ... 152
8.4 Align Program Elements along an EAge ... 152
8.5 Copy Program EIemMENt............uuec e 153
8.6 Delete Program Element............oueiiiiiiiiiii e 153
8.7 Generate Input / Output Variables.............iiiiiiiiiiiieeiiccccecccccccceecceeeee e, 153
8.8 Graphical CONNECHIONS..... ... 154
8.8.1 DireCt CONNECIOISceiiiiiiiiiiiiieeee e a e e 154
8.8.1.1 Types of CONNECHON INEScoeiiiiiiiiiiiie et e 154
8.8.1.2 Create DireCt CONNECION.....coi i 154
8.8.1.3 Modify DireCt CONNECIOTScoo ittt e e e e e e e eae s 155
8.8.2 INtra-Page CONNECIOISuvvieiiiiiiiiiiiiiiieiiieiteeeeveeereeesressesseeessaessaeeraeseanrsnane 155
8.8.2.1 Create Intra-Page ConNECIOrSuueiiiiiiiiieeee e 155
8.8.2.2 MOdify IPC NAMES......uiiiiiiiiiii ittt s 156
e T I - o7 | = SRR 156
8.8.3 Off-TASK CONNECIOISuuuiiiiiiiiiiiiiieiiiieiiieieaeteeerareraeeereeerreererenrrerrrerrrennrrrnne 157
8.8.3.1 Create Off-Task CONNECIOTS.uiiiiiiiiie e 157
8.8.3.2 RENAME OTC ...ttt et e e e e e e ettt e e e e e e e e e s nnnee e e e e e e e e e nnnnees 159
oS 0 0 N I = Lo QI SRR 160
8.8.3.4 LISt Of @ll OTCS ...uuiiiiiiiiiiie ettt ettt e e e e e st e e e s nbee e e e enneeeeeennee 161
8.8.3.5 DISPIAY ...veeeeeeeeeeeeeeee et 161
8.9 Converters, Splitters, JOINEIS..........uuiiiuiiiiiii e 162
8.9.1 CONVEIET ... 162
RS S o 1 (= 163
SRS IR T Lo 1] 1= PSP 163
8.10 [O70] 0 010 01T 01 £ 164
9 PMAC Runtime Systemcccoiiiiiiiiniininnnsanes 165
9.1 Overview of Online and Offline Modes...........cooooeiiiiii 165
9.2 Start RUNIME SYSIEM ... 165
9.3 Stop the Runtime SYStem ... 166
9.4 Runtime System — Autostart.............oooviiiiiiiiiiiiiii 167
9.4.1 Save program on the PMAC ... 167
@ Issue 4.2.4 v

Manual ibaLogic-V4

10

11

9.4.2 Delete Program on the PMAC ..o 168
9.5 ConNNECH/dISCONNECT ... e e e e 169
Platforms ... 171
10.1 Configuring the Platform ..., 172
10.2 Selecting the Platform............uuiiiiiiiii e 174
10 Configuration ... ——————— 175
11.1 RESOUICESo 176
11.1.1 Hardware RESOUICEScuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieetieebeeeeeeeeeeeeneebneeeeeeeaeeenneennes 178
11.1.2 SOftWAre RESOUICES.......uuuuiiiiiiiiiiiiiiiiiiiiiiiieiieaei e aansnaeennnannnnnnnnnnns 179
11.1.3 Global System Variables............c..ouiiiiiiiiii e 179
11.2 Hardware Configuration ... 180
11.2.1 GeNEral SEHINGSuvviiiiiiiiiiiiiiii e aa———_ 180
11.2.2 Card SEHINGS ...ovvviiiiiiiiiiiiiii e ——————————————————————— 181
11.3 SigNal @SSIGNMENT.......oiiiiiiiiiiiiiiie bbb aaaraaannane 182
11.3.1 Method as seen from the hardwareccccvvviiiiiiiiiiiiiiiieees 182
11.3.1.1 Example: Assignment of all signals of a module of an ibaFOB-io-S card 183
11.3.1.2 Example: Assignment of individual signals of an ibaFOB-4i-S or ibaFOB-40-S card 185
11.3.1.3 Change Signal and Group NamMeSc.uiii i 186
11.3.2 Procedure as seen from the programccccceiiiiiiiiiieeeeen 186
11.3.2.1 Example: Signals of an ibaFOB-4io-S card (complete module)ccccceeviiieeenes 186
11.3.3 Modify Signal ASSIGNMENT..........uuiiiiiiiiee e 188
11.3.4 Using externally defined signal Nnamesccccccoiiiiiiiiiiieeeeee 188
11.4 PCI Interfaces (WIiNdOWS PC) ... 190
11.4.1 Connection to the "iba World" ..o 190
11,411 Card SEHINGSeeiiiiiiii ettt rb e e s ab e e e abreee e 190
11.4.1.2 LINK SEIINGS ...veiitiieieiicieee ettt ettt sttt sttt esbeeneesaesbeenaesne s 191
11.4.2 BUffered MOEuuuiiiiiiiiiiii e 192
11.4.2.1 APPLICALIONS....cci i e e e e e e et e e e e e e e e snntaeeeeeeeeenaanes 192
11.4.2.2 INPUE RESOUICESttt e e ettt e e e e e e et e e e e e e e e e anneeeeeeaaaeeeannns 193
11.4.2.3 OUIPUL RESOUICEScoiiiiiiii ettt st e e et e e e e snbeeeeens 194
11.4.3 ibalLogic as Profibus Slave..............ooiiiii e 195
11.4.3.1 Card SEHINGSceiiiiieiie ettt e e st e e e b e e e aaeeee e 195
11.4.3.2 Settings for bus interface 0/1ccuiiiiiiiiie e 196
11.4.4 ibalogic as Profibus Master...............euviiiiiiiiiiiiiiiiii s 196
11.4.4.1 Brief DESCHPHON.o e e e e e e e e e e e e 197
11.4.4.2 Card SEHINGSceii ittt e ettt e e st e e e ab e e e snreee e 197
11.4.4.3 CONfIQUIAION ...t e e e e e et e e e e e e e s e aeeeaeeeeeannes 198
11.4.4.4 Peculiarities with signal assignment ... 198
11.4.5 SIMADYN D/ SIMATIC TDC CONNECLONuuuuuuiiiiiiiiiiiiiiiiiiiiniineiiineiineennes 199
11.4.5.1 Card SEENGSeeiiiiiiiie ettt e e e e e abe e e 200
11.4.5.2 LiNK SEHINGSveiiiiiiiiii ettt e et e e s et e e e sbeee e 200
11.4.5.3 CommuNiCation SEttiNGSoouviiiiiiiiii e 201
11.4.6 RefleCtive MEMOIYooviiiiiiiiiiiiiii e aeaaaaanannananas 201
11.4.6.1 Brief DeSCHIPHON.t e e e e e e e e e e e e e 202
11.4.6.2 Card SEtliNgS ... e e aaa e e e 202

Vi

Issue 4.2.4 m

ibaLogic-V4 Manual

T11.4.6.3 CONfIGUIALIONoeiiiiiiiii ettt e et e e e sttt e e e s ente e e e e snteeeessnteeeeesnnneaeens 202
R TR A 1 =TT 203
11.4.6.5 Flow of Setting Parameterscccuviiiiiiiii i 204
11.5 IDAPADU-S-IT PIatfOrme e 204
11501 SOHINGS e 205
11.6 TCP/IP ComMMUNICALION......uuiiiiiiieeiiiiiiieiie e e e e e e e e 206
11.6.1 TCP/IP Connection Settingsccccoiiiiiiiiiieeeeee e, 206
11.7 OPC COMMUNICALIONuiiiiiiieee it e e e e e e e e e e e e e nneeeeees 207
P17 OPC SEIVEN ...ttt e et e e e e e e eeaaaaans 207
11.7.2 Setting the OPC Variable Parameters..........cccoooiiiiiiiiiiiieeeeeeeeeeeen 209
12 Database Managementoo i 210
12.1 Backup Database.........couveiiiiiiiiiiiiiiiiiiiieeiiieeieee et 210
12.1.1 Manual Database BacCKupccoooviiiiiiiiiiiii e 210
12.1.2 Automatic Database Backup..........coovveeiiiiiii e, 211
12.2 Restore Databaseooooiiiiiiiiiiiiiiee e 214
12.3 Reset Databasecooiiiiiiiiiiiiiiiiee et nnennane 216
13 Program Analysis, Debugging and Time behavior.............ccccceiiiiiiiiiinnnn. 217
13.1 1= L DN T q o =7 217
13.1.1 Controlling the Signal DiSPIAYuuiiiiiieeiccceeeccecc e 218
13.1.2 SeleCt SIGNQAIS ...cooiiiiie e 218
13.1.3 MOVE SIGNAI ... 219
13.1.4 Mark the signals With COIOF..........ccooiiiiiii e 220
13.1.5 Remove Signal from the Display...........cccccoiiiiiiiiiiiii e, 220
13.1.6 Remove Graphs from the Display ... 220
13.1.7 SCAIE AXES ..ottt e e e e e e et e e e e e e e e e e e e e e e e 221
1 Tt At B U (o IR~ 1 T [PSRRI 221
13.1.7.2 Scaling With the MOUSE..........eiiiii e 221
13.1.7.3 Scaling using the display SEtlNgSccoeeiiiiiiiiiie e 222
13.1.8 MOVE SCAIESeeiiiieeeeeee ettt e e e e e 222
13.1.9 Z00M FUNCHON ..ottt 223
13.1.9.1 Zooming in (ENIArge)uuviiiiiiee et e e e e e e e 223
13.1.9.2 Z0OM OUE (REAUCE).......ueiiie ettt et et e e et e e e e nte e e e e enbe e e e enees 223
13.1.10 Trend graph Properti€so 224
13.1.10. TMISCEIIANEOUSoeveiiieiiiiiiiiiitiiee e a e s 225
1 Tt 0t 1 02 0o [) - USRS 225
G TR0 0 10 TR 1 o TR 226
1 T O L O] T g SR 226
(T B LY G- LSRR 226
L TR R OB G = (= T 227
13.1.10.7 Scientific NOLALIONoooei i 227
13.1.10.8SCaAlING MOAEcci ittt et e e e et e e et e e e e nte e e e eneeeeeenteeeeenees 228
13.1.11 Extended Functionality.............cooiiiiriii e 228
13.2 Time behavior ... 230
13.2.1 Evaluation time ... 231

@ Issue 4.2.4 vii

Manual ibaLogic-V4

14

15
16

13.2.2 TUMO MOAE......eiiiiiiiiiiiiii e 231
13.2.3 IMESSUNG ..ottt ettt e e e e et e e e e e e e e as 232
13.2.4 SOt PLC ..t e e e e e 232
13.2.5 Time considerations with multiple tasks...............oeeviiiiiiiiiiiiiiiiiiis 233
13.2.6 Worst-case conSiderations............coouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee e 234
13.2.7 Explanation of the Case abOVe..............uvviiiiiiiiiiiiiiiiiis 234
13.2.8 Task evaluation with time shift ... 235
13.3 D71 o] U T o T 237
13.3.1 PrOGram ©ITOIScuuuiiiiiieee e e ettt e et e e e e e e r e e e e e e e e e neeeeeas 237
13.3.1.1 Errors in user-defined function BIOCKScooiiiiiiiiiiiie e 237
13.3.1.2 DiIVISION DY ..ttt ettt ettt beenaeennee s 237
13.3.1.3 Incorrect Signal trendsS..........oocuiiiiiiiii e 237
13.3.1.4 EVvaluation SEQUENCE.........cceeiieeeeeee ettt e e e e e e st e e e e e e e e enas 237
13.3.2 CoMPIlAtion ©ITOIS.uviiiiiiiiiiiiiiiiiiiii e aaaaaaaaaaaa 238
13.4 Performance LiMitsuiiiiiii e 240
1341 EXAMPIE it 240
Programming rules..........ciiiieiceiciiiiiir s s s s s s e s s 242
14.1 Approach for the SOIULION ..., 242
Uninstall ibaLogicC.......cccooiiii s 245
Practice EXamples ...t rr s rr s s r s s s r e e 248
16.1 First Steps - Sample Project ... 248
16.1.1 Sample EXercise Part 1ouuuiiiiiiiiiiiiiieiiiii e 249
16.1.1.1 TaSK DESCIIPLIONveeiiiieiiiccie e e e e e e e e e e e e s e e e e e e e e e eaanes 249
16.1.1.2 Start ibaLogic Server and ibalLogiC Client............cociiiiiiiiiei e 250
16.1.1.3 Create @ NeW Project....... .o 251
16.1.1.4 Placing the TeSE TOOISccooiiiiiiiiie e e e e e e e e e e e e eanes 252
16.1.1.5 Placing the evaluation DIOCKScooiiiiiiiiiii e 253
16.1.1.6 Connecting the selector block with the test toOIS............coooiciiiiiiiiii, 254
16.1.1.7 Configuring the slider and generatorccoei i 255
16.1.1.8 Switch the partial connections online.............cccoiiiii e 256
16.1.1.9 Testing the switch and SEleCtOr ... 257
16.1.1.10CoNNecting the @dder..........cooiiiiiiiiie e 258
16.1.1.11Create an OTC to illustrate the resultccoei i 258
16.1.1.12Analysis Of the CIFCUILooiiiii e 259
16.1.2 Sample EXErciSe Part 2uuviiiiiiiiiiiiiiiiiiiiiiiiiiii s aaaaaes 260
16.1.2.1 Program analysis using the ibaPDA EXPIeSScccueiiiiiiiiiiiiiiee i 260
16.1.3 Sample EXercise Part 3ouuiiiiiii e 261
L I Tt I o o o= 11O SUEER 261
16.1.3.2 REMATIK. ...ttt e ettt e e e st e e e s bt e e e e anee e e e eanreeaeeans 262
16.1.4 Sample EXErciS@ Part 4ovviiiiiiiiiiiiiiiiiiiiie e 262
16.1.4.1 PrOCEAUIE..... .. e ettt e e sttt e e e e bt e e e e anbeeeesanbeeeesanteeeaeans 263
L I A =T 0 = OO PUEER 264
16.1.4.3 RESUIL ...ttt b e b b ettt e nree 265
16.1.4.4 REMAIKS......eiiiiiiii ittt e e e ettt e et e e e e e st e et e e e e e e s e e aanbeneeeeaeeeaaannes 266
16.2 DAT_FILE_WRITE Sample Project..........ccccoviieiiiieeeeeee 267

viii

Issue 4.2.4 m

ibaLogic-V4 Manual

16.2.1 DAT_FILE_WRITE in "Unbuffered" Mode.........ccooeiiiiiiiiiiiiiecccceeeeceeeeeeeeee, 267
16.2.1.1 Step 1: Configure the DFW BIOCK..........ooiiiiiiiiieiee e 267
16.2.1.2 Step 2: Connection of the DFWooiiiiiiiiie e 268
16.2.1.3 Step 3: Create other measure SignalS...........cccoi i 269
16.2.1.4 Step 4: Starting the reCOrdiNg.........cooiiiiiiie e 270
16.2.1.5 Alternative: Programming Joiner in ST.........ooi e 270
16.2.2 DAT_FILE_WRITE in "Buffered Mode" ..o, 271
16.2.2.1 Step 1: Configuration of the buffered iNPuts............ccooiiiiiii 272
16.2.2.2 Step 2: Set the parameters of the DFW module, "General Configuration" 273
16.2.2.3 Step 3: Accept the buffered input signals..............oooeiiiiiii e 274
16.2.2.4 Step 4: Transfer the data to DAT_FILE WRITEcoooiiiiiiieeeeee e, 275
16.2.2.5 Step 5: Wiring (Connecting) the remaining iNPutsS...........cccoociiieiiiiiee e, 275
16.2.2.6 Step 6: Starting the reCording..........oooi i 276
17 Naming CONVENLIONS........ccooiiiiiieeciiic s e s s e e s e e e e n s nn s 277
KT -1 - T8 o 1= 278
18.1 Standard data typescoooeiiei i, 278
18.2 Derived data typesuuuce i e 278
18.3 GeNEriC data tYPES .. .uveeiiiiie i 279
19 Standard Function BIOCKS............ccor 280
19.1 Table interpretation............o 280
19.2 Data tYPES .o 280
19.3 Block type with function diagram displayccoeevviiiiiiiiiiiiiiiiieeeieevieeeiiiaes 281
19.4 Analytical FUNCLONSveeiii i e e e e e 282
19.5 Arithmetical FUNCLIONS........oooiiiiiiiieee e 284
RS Tt B 1= = - | PSSR S 284
19.5.2 LOGANMICeeiiiiiiiiei e 284
TR T T I 4 o o] T] 1 U= 43 o 285
19.5.4 MISCEIIANEOUS ... 286
19.6 1] 7= o] = P 288
19.7 o T] 14T o PSSP 289
19.7.1 Bt Shifl oo 289
19.7.2 BitWiS€_BOOIEAN ... 290
19.8 Character StrING ..o 291
19.9 COMMUNICALION ... e e e e e e e as 292
RS TR O O 431 o 7= T =T o T 293
S Tt B O 700 | (= SRR 295
19.12 Edge DeteClioncoooiiieiie e 296
1913 REISHEI .. 297
1914 SEIECHION . 298
19.15 SigNaAl PrOCESSING ...uuuiiiee e 300
TO.16 SPECIAIS. ... 301

i85 Issue 4.2.4 ix

Manual ibaLogic-V4

20

21

22

23
24
25
26

(T I A {1 4= SO PR TR 304
RS TR T Y/ o oY 0o 0 1Y =T =] o] o 306
19.18.1 LiMiting CONVEIMETouiiiiiiiiiiii e 308
19.18.2 SCaAliNG CONVEIETovviiiiiiiiiiiiiiiiiiiititi et aaasaaaasaaaananaaanannannnns 31
19.18.3 Standard CONVEIEr..........coiiiiiiiiiiiiie et 313
Error Codes.... ..o 314
201 DAT_FILE_WRITE Error COUEScoeiueeiuiiaiiieeiiesiieeiee et 314
20.2 TCPIP_SENDREQCYV Error COUEScciieiiieiiiraieeaieasieeieeseeenieeseeeneeeaneeens 314
Characteristics of TCP/IP...........cccccciiiiiiiii e 318
21.1 Number of TCP/IP connections possible ... 318
21.2 Delayed Acknowledge Problem ... 318
Key Combinations ... 320
221 (01 1= o | TSRS STORRURRIN 320
22.2 Mouse Functions in the Programming Fieldcccceiiiiii e, 320
22.3 [0z] AN o q o (=X U 321
Character tables............ccciivmmmmimi e ———— 322
Index of Abbreviationscccoccciimiimn e ————— 324
Classified INdeX ... ——————————— 326
Support and contact ... ————— 330

Issue 4.2.4 m

ibaLogic-V4 Manual

1 About this manual

This documentation describes the function, the design and the application of the
software ibalLogic-V4.

1.1 Target group

This manual addresses in particular the qualified professionals who are familiar with
handling electrical and electronic modules as well as communication and measurement
technology. A person is regarded as professional if he/she is capable of assessing
safety and recognizing possible consequences and risks on the basis of his/her
specialist training, knowledge and experience and knowledge of the standard
regulations.

1.2 Notations

In this manual the following notations are used:

Action Notation

Menu command Menu "Logic diagram"

Calling the menu command ,otep 1 — Step 2 — Step 3 — Step xX”

Example:
Select the menu "Logic diagram - Add - New function
block".

Keys <Key name>

Example:
<Alt>; <F1>

Press the keys simultaneously <Key name> + <Key name>

Example:
<Alt> + <Ctrl>

Buttons <Key name>

Example:
<OK>; <Cancel>

File names, paths "Filename", "Path"

Example:
"Test.doc"

i85 Issue 4.2.4 11

Manual ibaLogic-V4

1.3

Used symbols

If safety instructions or other notes are used in this manual, they mean:

A DANGER

The non-observance of this safety information may result in an imminent risk of death
or severe injury:

O From an electric shock!

U Due to the improper handling of software products which are coupled to
input and output procedures with control function!

A WARNING

The non-observance of this safety information may result in a potential risk of death or
severe injury!

A CAUTION

The non-observance of this safety information may result in a potential risk of injury or
material damage!

Note

A note specifies special requirements or actions to be observed.

Important note

Note if some special features must be observed, for example exceptions from the rule.

Tip

Tip or example as a helpful note or insider tip to make the work a little bit easier.

Other documentation

Reference to additional documentation or further reading.

12

Issue 4.2.4 m

ibaLogic-V4 Manual

2.2

2.3
2.31

Introduction

Identification
PAC (Soft PLC) and signal manager "ibaLogic-V4".

Proper Use

The product / system is used for the measurement and control of technical
plants and systems.
ibalLogic is not designed for safety-related systems.

Any other or extended use of the product / system is deemed to be improper, and
hence, misuse. In this case, the safety and protection of the product / system may get
impaired or compromised. iba AG is not liable for any loss or damage resulting from
such misuse.

A DANGER

Danger by enabling functions or other services!

Possibility of human injuries and damage to machinery by enabling functions and
other services (PMAC, OPC ...), which have direct impact on the response of the

system.

Secure the system while working on it! Follow the safety regulations applicable!

Release Notes

Change Log File

A change log file (changelog.htm) for your software is available on the installation
media. It contains, among others, important information on the following topics:

O New functions

Q Error corrections

Issue 4.2.4 13

Manual

ibaLogic-V4

3 Software Installation
3.1 System Requirements
3.1.1 Hardware
The hardware requirements are listed in the following table.
Minimum requirement Recommended or higher
CPU speed 1600 MHz 2000 MHz
Number of CPUs 1 2
RAM 768 MByte 2048 MByte
Screen resolution 1024 x 768 1280 x 1024
The minimum memory requirement is about 650 MB. An SQL server express database
can grow in size up to 4 GB. Keep sufficient free memory space for your requirements.
For more information, please refer to "Performance Limits, Page 240".
Note
Installation is possible if the minimum requirements are not met. However,
performance limitations may arise.
14 Issue 4.2.4 i8]

ibaLogic-V4 Manual

3.1.2

Software

One of the following Operating Systems must be pre-installed:
O Windows XP Professional SP3

O Windows 2003 server

Q Windows 7 SP1 32bit

Note

Administrator rights are required for both the installation and operation of the ibalogic
Server and Client.

The software packages listed below are part of the CD supplied:
Windows Installer 3.1

MDAC 2.81

.Net Framework 2.0 SP1

MS SQL Server Express 2005 (9.0)

OPC Core Components 2.0

ibaWDM driver

CB-USB Dongle driver

Visual J# 2.0

0O 0000000

The installation wizard checks whether the versions of various software packages are
available. If any software packages are missing or are an older version, they are
installed by the installation wizard or updated.

Issue 4.2.4 15

Manual ibaLogic-V4

3.2 License Activation

The dongle is already customized at the time of delivery. The customer dongle
generates a virtual key in the system that unlocks or activates various functions.

A CAUTION

Danger due to switching off the runtime system PMAC after removing the
dongle!

The system cannot be commissioned without the dongle having the associated
license. The license determines the unlocking or activation of functions.

Thus, leave the dongle inserted during the entire operation!

If the dongle is removed during the operation, the PMAC (Programmable
Measurement and Automation Controller) switches off following repeated warnings
(ca. 5 min after the first warning).

The PMAC does not start without a dongle. Instead, an alternative demo version of the
PMAC can be enabled in the ibaLogic Server options (see "Settings for the Local
PMAC, Page 49"). If the PMAC is started manually or automatically by the ibalLogic
Server, a warning message occurs saying that no dongle is inserted.

ibalogic Server [g|

' Failed ko start local PMALC Service
e 4 Could not stark PMAC service because dongle is missing

The demo version does not support hardware access, instead, several devices are
simulated. Here, if possible, the outputs used are directly reconnected to the inputs
(not possible e.g. with buffered inputs).

Several function blocks are disabled, i.e. they are configurable in the plan, but are not
calculated, this includes among others: TCPIP_SendRecv, DatFileWrite, User-DLLs.
figure 1: Dongle

16 Issue 4.2.4 i8]

ibaLogic-V4

Manual

3.3

3.3.1

3.3.2

Procedure

2 Connect the dongle to a USB interface.

After starting the server and the client, the following message appears in the console
view: "Online Server: DriverStatus: Driver running for Dongle Vxxxxxx".

Note

This message only occurs, if a project has been started.

Software Installation

Follow the instructions of the installation wizard to install the ibalLogic software.

Prerequisite

Q Your system meets the requirements of the hardware and software.

Procedure

> Doubile click on the file "Setup-4.x.xx.exe".

[ibal.ogic Setup

A=

ibalogic 4.2.4.0

This wizard will guide wou through the installation of ibaLogic.

It is recommendead that vou close all other applications
before starting Setup. This will make it possible to update
relevant swstem Files withaout having ko rebook wour
compukter,

Click Mext ko conkinue,

Mext = l [Zancel

Issue 4.2.4

17

Manual ibaLogic-V4

3.3.3 Software required
The components required and their versions are specified under "Software".
Presentation Explanation
Version number green Software is installed with adequate functionality.
M5 SOL Server 2005 Express 9.00,4035.00
Version number red Software is not installed or inadequate. The associated
<Installation> button is enabled.
MS SOL Server 2005 Express 0.0
2 Install or update the software component(s) by clicking on the <lInstallation>
button that is enabled.
1™ ibalogic Setup E|E|E|
Required software ="
1=
Software Zurrent wersion Task
Windows Installer 3.1 3.1.4001.5512
MOWAC 2,51 2.81.3012.0
et Framework 2.0 5P 1 Z005F 2
M3 SOL Server 2005 Express 9,00, 5000, 00
‘Wisual Jsharp 2.0
< Back ” Mext =] [Cancel
2 If required, confirm this in the dialog window that appears. If all software
components have been installed or updated, click on <Next>.
18 Issue 4.2.4

ibaLogic-V4

Manual

3.34

System requirements

The system requirements are checked prior to installation of the software components.

Presentation Explanation

Green The recommended requirements have been met.
Orange The minimum requirements have been met.

Red The minimum requirements have not been met.

2 If the system requirements meet the minimum requirements, continue the

installation.
o x
I : ibalogic Setup
System requirements =
Detecked Recommendead rinirnm
CPLU (Speed) 3006 Mhz 2000 1600
CPUs {Ma) z z 1
RAM 2047 MB 2048 TGE
Screen resolution 1920 x 1200 1250 x 1024 1024 x 768
iba A5 ~jbalogic 4.2, 1.0
< Back][Mexk =] [Zancel
Issue 4.2.4 19

Manual ibaLogic-V4

3.3.5 Choose components

You can use the "Installation type" selection field to choose components prior to the
installation.

Installation type Explanation

Complete All components are installed.

Only server Only the ibaLogic Server components are installed.

Only client Only the ibaLogic Client is installed.

User defined Itis rTr)sdsibIe to choose the components. Only the components selected are
installed.

> Define the ibalLogic components by selecting the installation type.

™ ibalogic Setup M= |El
Choose Components =
Choose which Features of ibalogic vou want ko install, Lﬁ
Check the components you wank ko install and uncheck the components vou don't wank to
install, Click Mext to continue.
Select the bype of install: b= w |
O, select the optional = I ibaLogic A-}
cu:umpii:unents wou wish bo e =
inskall: ' [
Server =
[]ibaLogic database - WARNING: The databas: |
Client =1
| HER 7 Wk - " e —ll
£ | 3|
Descripkion
Space required: 112,5M6
< Back ” Mext = l [Cancel

A CAUTION

The "ibaLogic Database" option is not set in case of an update. When the option is set,
the existing database including its projects are deleted in the course of installation.
"The database already exists and will be overwritten" is displayed as a warning
message.

20 Issue 4.2.4 @

ibaLogic-V4 Manual

3.3.6

3.3.7

Choose Installation Location

The ibalLogic folder structure (server, client etc.) is created in this folder.

recommends using the default folder specification.

2 Define the target folder.

Setup will install ibaLogic in the Following Folder, Toinstall in a different folder, click Browse
and select another folder, Click Mext bo continue,

Destination Folder

BC: \Program Filestibalibalogic v

|

Space required: 112.5MB
Space available: 1.5GE

i ibal.ogic Setup E“E'El
Choose Install Location =
Choose the Folder in which ko install ibaLogic, Lﬁ

< Back ” Mext = l [Cancel

Select SQL server

iba

If the "ibaLogic Database" check box has been enabled when installing, the installer
searches for Microsoft SQL servers on the local computer during the installation
process and offers you the "Select SQL server" dialog for selecting the database

instance.

o Select the "<PC name>\IBA" default instance or an instance of your choice and quit

the dialog window using the <OK> button.
The ibalogic database selected is installed on the server selected.

Issue 4.2.4

21

Manual ibaLogic-V4

Select SQL server @

Local zervers |

Select a local SOL zerver bo connect b
= L_-j Local databaze instances
= 1BA-FUEESOE2NBA

Cancel

Q Note
Any existing ibaLogic database can be overwritten after confirmation in the dialog
window that appears. If you exit this dialog window using the <No> button, the existing

database remains unchanged.

! : The database LOGICHET already exists, Do you want ko REPLACE the existing one? {projects, workspaces etc, will be removed)
)

Yes] [Mo]

22 Issue 4.2.4 m

ibaLogic-V4 Manual

3.3.8 Complete ibalLogic installation

Complete ibalLogic installation
2 Click on the <Finish> button to complete the installation.

i ibalogic Setup

Completing the ibalogic Setup
Wizard

ibalogic has been installed on wour computer,

Click. Finish ko close this wizard,

Fun ibalogic server andfor client

Create desktop shortcuts

iba AG Website

=13

m Issue 4.2.4

23

Manual ibaLogic-V4

ibaLogic Software

Introduction

iba AG has already specialized in the field of measured value acquisition in heavy
industry plants for many years. The segment focus has been on plants for the
production and processing steels and non-ferrous metals.

The programs for the acquisition” and analysis? of the data recorded are in use all
across the globe today, and are deployed by all large suppliers of machinery and
automation technology worldwide.

As a result of the wide-ranging options for the connection of the iba measurement
technology to the most diversified automation technologies and generations,
particularly even to the most prevalent field and drive buses, the need to connect
these, at times, highly diverse worlds, developed rather quickly. From now on,
"unidirectional flow" of measurement needs to become "bidirectional flow" for
information exchange between various automation systems — this is typical for the
upcoming market of modernization or revamping of automated systems that are
already in existence.

In order to address this requirement, iba AG has already developed a freely
programmable signal manager since 1995. The standard, IEC 61131-3, which had
already been formulated during this period, for describing technical work flows with the
help of graphics elements and easily embedded programming techniques, simplifies
the descriptions of complex signal processes considerably.

The graphical mode of programming?® that has been derived from this standard, forms
the basis of almost all automation systems today. As a result, graphics programming is
compatible and portable to a large extent.

Features:

@ Onlinechange

Q Permanent project backup
Q On-the-fly input check

Q Visualization and trace tool (ibaPDAExpress)

!ibaPDA

2 ibaAnalyzer

*FBDisa graphical programming language, in which function blocks are interconnected with one another
instead of a sequence of textual commands, as in the case of classical programming languages. Circuit
diagrams of hardware development can be considered a model in this case. This representation of a
program meets the requirements of developers of controller software, whose technical background is
typically one of electrical engineering. The various function blocks are themselves often created using other
PLC languages, . such as, for example, "structured text", and can be supplied as standard blocks by the
manufacturer of the automation systems or written by the user himself or they can even be imported.

24

Issue 4.2.4 m

ibaLogic-V4 Manual

4.2

Areas of Application

ibalLogic is used for the following applications:

OA | il

signal management control and regulation measurement and
condition monitoring

W[

SPS co-processor simulator

figure 2: Areas of Application

Signal management

You can establish links between the most diverse generations of automation systems
from the largest variety of manufacturers with the with the help of iba connectivity.

Bi-directional data exchange enables communication with controllers that are otherwise
incompatible.

SPS-co-processor
In this area of application, the ibalogic plays the role of a co-processor.

The vertical green lines in the figure "Areas of application" represent the sampling time
of the original automation equipment. Data is transmitted after one PLC clock
pulse (T1) to the Soft PLC (ibaLogic). Complex calculations can be performed in real
time and the results transmitted back before T2 using the PC processing power and the
PC data formats available. Modernizations or revamps, too, can be implemented with
the help of such methods: Open-loop and closed-loop control and regulations functions
of the "old" PLC are taken over by the new ibaLogic automation system step by step.

Observation of measurements and status (Condition Monitoring)

Apart from the use as a signal manager, it was also desired to involve ibalLogic for
complex measurement tasks, which would not have been possible using a standard
PDA. Integrating a block for measured value sampling is one of the core functions of
ibaLogic. You can achieve event-driven management of measurement tasks and save
the values on various media using this "DAT_FILE_WRITE". You can then process and
analyze the data using various iba tools, e. g. ibaAnalyzer, ibaDatCoordinator, etc.

Issue 4.2.4 25

Manual ibaLogic-V4

Automation (Control & Regulation)

The graphical programming language described in the IEC 61131-3 standard forms the
basis of ibalLogic. This language has been conceived particularly for programmable
logic controllers (PLC). The developments in recent years have shown that the market
for measurement and control systems is growing together increasingly. The logical
consequence is that ibaLogic can obviously also be used for automation tasks as a full-
fledged PLC.

If, in the process, the tasks of the Operating and Runtime system are handled by a PC,
then one speaks of a PC-aided Soft PLC or PAC, in short (Programmable automation
controller).

ibaLogic permits demarcation of the Runtime system of the PC into a secondary stand-
alone intelligence system, ibaPADU-S-IT. In such a case you can shut down the PC
without stopping the Runtime system. The PC is used as a development station in such
cases, as in all other PLC systems.

Simulator

The simulator is an active one and an application that is programmed using ibalLogic.
HMI visualization presents the operator interface and the result of the simulation. The
standard OPC interface is used to establish the connections between ibalogic
simulation and the HMI.

26

Issue 4.2.4 m

ibaLogic-V4 Manual

4.3 The ibaLogic Components

ibaLogic is based on the server-client model. This architecture facilitates decentralized
and multi-client operation.

ibaLogic is composed of the following components:

U Runtime system (PMAC)

U ibalogic Server
U ibaLogic Client
U Database
Q OPC Server
- ™
(— f_'y
<« » 4 W <«
OPC
. =
figure 3: ibaLogic Components
Database OPC Server
4 omite
?: ibaLogic Server w Runtime system "PMAC"
=
#| ibaLogic Client
%

In the simplest case, both the components mentioned above are located in one
computer. However, you can also run these components on separate computers.

m Issue 4.2.4 27

Manual ibaLogic-V4

4.3.1

4.3.2

4.3.3

43.4

Runtime system (PMAC)

By starting an ibalLogic project in the ibaLogic Client, it gets compiled and loaded in the
"Programmable Measurement and Automation Controller" (PMAC). This Runtime
system can be located on a Windows computer (as Windows service) or on a Windows
CE-compatible device (ibaPADU-S-IT).

The Runtime system continuously returns values that are calculated currently to the
client. These are displayed on-line in the graphical user interface of the project.

If a project has been transferred to the Runtime system and started, it is capable of
running independently without the server / client running.

ibalLogic Server

ibaLogic is a database-based system. The ibaLogic Server takes over the management
of the database and the communication between the ibaLogic Client and the Runtime
system as the central manager.

All ibaLogic projects are managed by the ibalLogic Server in a database.

ibaLogic uses the unlicensed Microsoft SQL Express database. During installation, a
Microsoft SQL Express server with the associated database is installed if it is not
already present.

The ibalLogic Server dialog is also used to backup and restore ibalLogc applications.
The backup of the database is saved in an external file.

If there are any modifications made to ibaLogic projects, these are automatically saved
in the database. Specific saving during the customization of a project is omitted.

ibaLogic Client

The ibalLogic Client is the programming environment in which ibalLogic projects are
programmed and configured. An ibaLogic Server must be connected for this purpose.
This ibalLogic Server can be present on the same computer or in the network.

Over and above this, the ibalLogic Client controls loading, starting and stopping an
ibaLogic project in the Runtime system with the help of the ibalLogic Server.

OPC Server

The OPC Server provides all variables, which have been declared as OPC visible, to
the OPC Clients connected. In general, OPC Clients are HMI (Human Machine
Interface) systems. By default, the OPC Server runs on the same machine as the
ibaLogic Server, but it can also be explicitly started on other computers in the network,
and is then connected directly with the PMAC via TCP/IP independently.

28

Issue 4.2.4 m

ibaLogic-V4

Manual

4.4

@

Multi-client Operation and other System Configurations

s ™
() () () 8 .
., » ., | '
| | gl
== ﬁ‘? '—h 1(b, f— L(L\7
oprc
\.
figure 4: Possible system configuration

é\"\\\)%“\‘\)%{\\\)w

Database

ibaLogic Server

ibalLogic Client

OPC Server

A HMI

Runtime system "PMAC"

PADU-S-IT

In the simplest case, ibaLogic can run with all its components on a single Windows

computer.

Alternatively, the ibalLogic components can also be distributed and run on different
computers. There are 3 ibaLogic applications in the sample configuration illustrated
above. One runs on a PC and 2 others on separate PADU-S-IT systems. The central
server has a connection to one database in which all 3 projects are backed up. Only
one ibalLogic workspace is always loaded on this server from the database, which can
contain three projects corresponding to the three PMACs.

It is possible to control and monitor the workspaces from different computers in multi-
client mode of operation.

Important Note

Only one client at a time should carry out modifications regarding the projects of a

server.

Issue 4.2.4 29

Manual ibaLogic-V4

However, only one project / application as selected is always "active" in one
workspace. You can only work with and monitor this active PMAC online.

The HMI system can be fed information via the OPC Server. No OPC Server can run
on the PADU-S-IT. As a result, HMI data from and to the PADU-S-IT head units must
run via this Windows computer.

30

Issue 4.2.4 m

ibaLogic-V4 Manual

4.5

Operating and Processing Modes

ibaLogic provides a range of operating modes in order to meet the various
requirements of different applications. Several processing modes have been
implemented since ibalLogic works not only as a soft PLC, but also as a signal
manager, signal processor or simulator.

You can choose the following modes of operation in ibaLogic:
Q0 Measurement
Q Soft PLC

Set operating mode

Procedure

1. Select "Tools — I/O configurator" in the menu. The "I/O configurator" window is
displayed.

2. You will find the operating mode options in the tab "Hardware configuration —
General settings".

3. Activate the operating mode to be used under "General settings".
4. Finally, click on <Accept>.

5. If you wish to close the I/O configurator, click on <OK>.

You can choose the following processing modes in ibalLogic:
"Buffered mode" (= Packet transmission)

For explanations, please refer to "Time behavior, Page 230" and "Buffered Mode, Page
192",

Set processing modes

Procedure

1. In the tree on the left, mark the hardware whose processing modes you would like
to set. The "Hardware configuration” tab for this hardware is displayed.

2. Activate the desired mode under "Connection settings".
3. Finally, click on <Accept>.

4. If you wish to close the I/O configurator, click on <OK>.

Note

For more information, please refer to "General Settings, Page 180".

Issue 4.2.4 31

Manual ibaLogic-V4

4.6

4.6.1

Structure of an ibalLogic application

An ibalLogic project application consists of the following elements:

Workspace
U Project 1

= Task 1/ Program 1

= Task 2/ Program 2

= Task n/ Program n
U Project 2

= Task 1/ Program 1

= Task 2/ Program 2

= Task n/Program n
U Projectn

You can assign the programs with their properties (task interval etc.) to one project
each. The projects, in turn, are organized in a workspace.

One project is assigned to one Runtime system / PMAC. Only one project is set as
active within one workspace, i. e. only this active project can be started or stopped.

Note

Only one project can be active within a given application.

Task / Program Properties

According to IEC 61131-3, several programs can be assigned to one task. ibalLogic
supports fixed assignment of one program to one task.

The following properties can be assigned to each task:
Q Interval time
Q Priority

The interval time determines the time slot in which the task is restarted. The minimum
time slot for the interval time is 1 ms.

The priority setting determines the sequence in which the interval programs of a project
are executed, starting with priority 0.

Note

The program properties "Interval time" and "Priority" are considerably significant for
the project performance. For more detailed information on these program properties,
please refer to "Time behavior, Page 230" and "Performance Limits, Page 240".

32

Issue 4.2.4 m

ibaLogic-V4 Manual

4.6.2

4.6.2.1

Program Elements

An ibalogic program may consist of the following elements:
Function Blocks

Function blocks of the integrated standard library
Function blocks created by the user with structured text
Macro blocks created by the user

DLL-based function blocks created by the user

Linking elements

Hardware input and output signals

0000000 o

Comments

Function blocks

ibaLogic has a library of function blocks. This library contains standard function blocks
in accordance with IEC 61131-3 and also supplementary function blocks.

You can combine these into a macro block to have a clearer program structure and
provide encapsulation of various graphics subprograms.

You also have the option to create a separate block yourself that is required for a
specialized solution to a problem.

For this purpose, ibalLogic provides the feature of creating a new function block with the
help of structured text. The ST (Structured Text) code is visible to the user, who can
modify it.

One variant of the self-created function block is creating your own DLLs (using a DLL
framework provide by iba). The code is hidden with this option. The block created in
this manner is available as a standard function block.

Other Documentation

For further information, please refer to the documentation on creating DLLs on the
supplied CD "iba software and manuals".

Issue 4.2.4 33

Manual ibaLogic-V4

4.6.2.2

Graphics Programming

The following elements are available to link the function blocks:

U Connection lines

Q Intra-Page Connectors (IPC)
Q Off-Task Connectors (OTC)
Q Converter

Q Splitter

O Joiner

You need to connect the function blocks with the help of connection lines for graphics
programming. You can use intra-page connectors for better program structuring.

An intra-page connector merely represents a drawing simplification. In the process, the
IPC replaces a connecting line. This is beneficial particularly when several objects on
one page need to be connected with the same point or "long" connections are required
across multiple pages.

Off-task connectors serve as program-independent connecting elements. These are
required whenever you need communication between several programs.

Off-task connectors are also used for communication between ibalLogic and OPC
Clients. This can be configured in the off-task connector.

Tip
For further information, also refer to "Graphical Connections, Page 154" and
"Converters, splitters, joiners, Page 161".

4.6.2.3 Comments
You can use comments to structure and simplify the program description. These can be
placed wherever desired or even "docked" to another element.

4.6.2.4 Data types available
ibaLogic supports all elementary and combined data types defined in the IEC 61131-3
standard (Exception: WSTRING).

34 Issue 4.2.4 i8]

ibaLogic-V4 Manual

4.6.2.5 Integrated measurement using ibaPDA Express
You can use the integrated ibaPDA Express tool for quick display of a signal waveform.
% ibalPDA Express 1.5.12.0 [localhost]
Trend graph k4
0l @ gr1n = 5 =-
=) £ 200
I. PERTD GENERATOR_1 QWT (-89 A 308) '_.
Iu-..'-'li-nilil_'_-Ill-;,’i.- il F1EQ
.'I.. PR) i = I.I"- il
:': ! /'-’ I'.
'l N\ \;a L
4 h! 4)
/ \ x B I
."'.. " -"'.' i '\,L 7
g bR 77 % # | -0
, i L e L I
~ \ S | LS Mol S B
\._ 150
b . : . . : e 200
151005 15003 15112 15115 154018 1590 15:10:24 1510
figure 5: Integrated measurement using ibaPDA Express
With the ALT key pressed, you can move the signals to the ibaPDA Express window
using Drag & Drop and display them there.
ibaPDA Express does not save any data for long-term recording.
4.6.2.6 Measured value storage

You can store measured values using the licensed (rights-managed) function block,
"DAT_FILE_WRITE". For more information, please refer to "DAT_FILE_WRITE (DFW

Function Block), Page 96".

Tip

the help of the user-friendly and comfortable analysis software, ibaAnalyzer.

You can display and evaluate the signal measurements in the *.dat files created with

Issue 4.2.4

35

Manual

ibaLogic-V4

4.7 Connectivity
The ibalLogic systems are capable of communicating with one another via the
interfaces available in the Windows PC or the PADU-S-IT (e. g. via TCP/IP, ibaNet
etc.).
The communication with external systems or discrete 1/Os is illustrated in the
connectivity overview diagram.
ibalogic 2 ibaLogic 1 ibaPDA

- External systems

- Discrete 10s

T BgC

bﬂim"rnehmkﬂﬂp‘m‘ [xle]
figure 6: Connectivity to iba and external systems

36 Issue 4.2.4

ibaLogic-V4

Manual

5
5.1

ibalLogic Server

Functional overview of the ibalLogic Server

The

ibaLogic Server is not only the central point of communication between

ibalLogic Client and the PMAC, but it is also responsible for the management of

the i

balLogic-V4 projects in the database. Similarly, in the background, it manages a

connection to an active PMAC for loading / starting / stopping actions of the PMAC.

This

link is established via the ibalLogic Client.

Hence, the server can be divided in the following functions:

U Server operation

Start / Stop / Close

Database actions
Backup and restore
Resetting the entire current database

Q Administrative settings

Set the port number for client connections

Set up connections to ibalLogic databases and their parameters
Configure auto start for the server and the local PMAC

Set up automatic backup of the current database

Set the general server options

Display status of / execute the database scripts (only for support purposes)

\
f
— o]
4+——r
J
figure 7: Functional overview of the ibaLogic Server
(—ft
Database w Runtime system "PMAC"
?‘: ibaLogic Server ‘ File system
=
2 . . Save/
1 ibal.ogic Client D Restore function
=

Issue 4.2.4 37

Manual ibaLogic-V4

5.2 Start ibalLogic Server

Requirement
You have the ibalLogic Server shortcut on the desktop.

Procedure

1. Double click on the shortcut "ibaLogic Sever" on the desktop.
The "ibaLogic Server" dialog box is displayed.

i!ihaLugii: Server 4.2.4

Server Dakabase Tools Help

UL =

Database Server: LOGIC4-PCABA

Started FERE R

When opening the ibalLogic Server, it goes automatically to the start status. The

following icons are displayed in the info section.

38 Issue 4.2.4 @

ibaLogic-V4

Manual

2. Click on the <Start> button to start the ibalLogic Server. You can also start the server
via the menu "Server - Start".
The start / stop status is displayed in the server dialog box by an icon, a message

and the active button.

¥ ibalogic Server 4.2.4

Server Database

Database Connection

Tools Help

nstalled connection

gy | CE—

@ Stop

Database Server:

LOGIC4-PCABA

I Started

“;'Lﬁ' . INRT

w ibalLogic Server 4.2.4

Server Database

Tools Help

Database Connection: I Installed connection v | B

L,

@ Start

Database Server.

LOGIC4-PCABA

Stopped

%'Lﬁ' . IRdRT:

Issue 4.2.4

39

Manual

ibaLogic-V4

5.3

User Interface — ibaLogic Server
The ibalLogic Server is used to:

O Configure the server

Q Putitin the start / stop mode

O Configure and backup the database

Database Connectior hstalled conne

j EJ @5top

¥¢ ibalogic Server 4.2.4 j‘zD-

Database Server: LOGIC4-PChBA I

figure 8: ibalogic Server - User interface

1 Menu bar
2 Setting up the database connection
3 Start button / Stop button

Started | [~ R I

5

Current database connection
Status bar

40

Issue 4.2.4

ibaLogic-V4 Manual

54 ibalLogic Server Setting

5.4.1 Configuring the Client port

The client port number serves as a link parameter for an ibalLogic Client.

Note

' This setting should be changed only if a service that uses this port is being executed
on the server computer. The same port must be configured in the client for connecting
with this server. Enter the new port number also while selecting the link. Select the
menu ,File - Connect with Server..." of the client.

The default value of the port is set to 8086.

Prerequisite
U You have stopped the ibalLogic Server.

Procedure
1. Select the menu "Server - Configure Port...".

w ibalogic Server 4.2.4 [Z”E]E]

Server | Daktabase Tools Help

| Configure Part, ..

) Start

|Lnneu:tiu:un W |

it

D atabaze Server: LOGICA-PCABA,

Stopped ﬁ T _& =N

2. Enter the port number of the client directly in the input field or set the port number
using the spinner.

Edit port

Port: | 8086 % |

o I cie |

m Issue 4.2.4 M

Manual ibaLogic-V4

5.4.2 Configuring the Database Connections

Q Important Note

If the server can no longer connect to the local database after changing the PC name,
please change the connection name from the old computer name to "localhost" under
"DataSource" . (See "Configuring the Database Interface, Page 43")

You can set up multiple database connections in ibaLogic. However, only one of them
is active at any given time. While installing ibaLogic, the database is created locally and
the default setting pertains to this.

&) Note
\

You need to perform the following actions only if you want to connect to a non-local
database and this was not already specified at the time of the installation.

5.4.2.1 Connect database

Procedure
1. Click on "Database Connections..." in the Database menu.

ﬂihaLugir. Server 4.2.4

Server | Database | Tools Help
Datal:uase| & Database Connections... 1 .v'
Database Scripks... s
E Reset Database
o=
=S¢ Backup...
- 5 P
= | Restore...
Database Server: LOGICA-PChBA
Stopped [i _ﬁ - W -

2. Choose an ibalLogic database connection in the "Move To" drop down box.
The default setting is the "Installed connection" database connection. This is the
connection to the local database.

42 Issue 4.2.4 m

ibaLogic-V4 Manual

3. Call up the configuration dialog box for database connections with the <...> browser
button. The browser button becomes visible only after clicking in the text field of the
"DataSource" line.

Edit connection

l{tl |—_?l~ | |MDVE ta: Installed connection -

Q b U I ame: Elnstalled cohneckion

Connection properties:

DataSource LOGIC4-PCMBA =
IritialCatalog LOGICHET
PacketSize 2000
|nteqratedSecurity YES
PerziztS ecuntylnfo Falze
Encrpt Falze
DataSource

The name or network, address of the SOL Server to connect to

Apply

A CAUTION

The following parameters

4 InitialCatalog
PacketSize
IntegratedSecurity

PersistSecuritylnfo

0O 00 O

Encrypt

need to be changed only if you, e. g. wish to use a database that is already available
centrally for ibalLogic also.

However, you must have basic knowledge on databases for this purpose.
In case of doubt, please ask a database administrator to configure the settings.

m Issue 4.2.4 43

Manual ibaLogic-V4

5.4.2.2 Configuring the Database Interface
Enter the computer name and the instance of the ibaLogic database with which a
connection needs to be established under "DataSource".
Procedure
2 Enter the name of the server directly into the text field or select the database using
the tree with the help of the browser button.
The browser button becomes visible only after clicking in the text field.
Edit connection
v G | | Move ta: Installed connection -
Q : b U M ame: !Installed connechion
Connection properties:
D ataSource LOGIC4-PCMBA (&)
ImitialCatalog LOGICHET
PacketSize 2000
IntegratedSecurty YES
PerzigtSecuntylnfo Falze
Encrypt Falze
DataSource
The name or network, address of the SGL Server to connect to
porly
44 Issue 4.2.4 m

ibaLogic-V4 Manual

5.4.2.3 Select SQL server

The "Select SQL server"dialog box contains 2 tabs "Local servers" and "Network
servers".

Select SQL server

| Local servers | Wetwork servers |

Select a local SOL zerver bo connect to;

= L__] Lokale Datenbankinstanzen

o WORKSTATION-OTMBA,

figure 9: Local server instances

Select SQL server

Local servers | Metwark servers

TR R A

Select a SOL server netwark instance to connect ta:
= [__] WORKSTATION-0Z

|j WORESTATION-024BA
=11 WORKSTATION-03

: |j WORESTATION-034BA

figure 10: Network server instances

All SQL database instances available on the computer are listed under "Local database
instances".

After pressing on the "Network servers" tab, the entire network available is searched for
SQL instances. This process may take some time. As long as the network is being
searched, a message "Information is being read" appears in the text field.

Procedure
1. Click on the SQL server instance to which the ibaLogic Server should connect.

2. Finally, click on <OK>. The SQL server instance is accepted. The dialog box is
closed.

Result
The SQL server instance is connected with the ibalogic Server.

@ Issue 4.2.4 45

Manual

ibaLogic-V4

54.2.4

Remark

Other database connections may be installed or deleted.

The following icons are available for configuring the database connection:

Icons / Selection box Tooltipp Explanation
Add Add a new database connection

]

|—_}~ll Remove Delete a database connection

L] Start To the first connection

4 Back To the previous connection

b Next To the next connection

Y] End To the last connection

Move ko Installed connection Z

Choose object

Option for selecting a connection

Manage Database scripts

Important Note

The list of installed database scripts is used to provide information for the iba support.
Please do not make any modifications.

All scripts implemented in ibaLogic along with the associated information such as the
version number, script name and the date of installation are displayed in tabular form
when you call up the function "Database scripts". The ibalLogic Server must be stopped

in order to call up the "Database scripts" dialog.

Generally, the database scripts are checked via version updates and automatically
installed after a previous check.

46

Issue 4.2.4

ibaLogic-V4 Manual

5.4.3

5.4.31

Options

Activate Autostart Server

The ibaLogic Server is automatically started on Windows startup.
You can choose where the autostart options are saved:

4 In the registry

Q In the autostart folder of the current user

U In the autostart folder for "All users"

The default setting is that the server also starts up when the ibalLogic Server dialog is
opened. If the server dialog should be open, but the server itself in STOP mode, the
option "Autostart server stopped" must be enabled. In this case, the server must be
started up manually so that the client connections are accepted.

Autostart options Explanation
Registry file (recommended) The option saves the autostart options in the registry file.
Start-up folder (User) The option saves the autostart options in the start-up

folder of a given user.

Start-up folder (All users) The option saves the autostart options in the start-up
folder for all users.

Autostart server stopped (not recommended) This option opens the ibalLogic Server dialog, but the
server itself is not started. The server remains in the stop
mode.

Procedure
1. Select the "Tools - Options" menu.

ﬁihaLugil: Server 4.2.4

Server Database | Tools | Help
|‘?& Options "
Show PMACS in network t
@ : Start-
_-)‘g iﬂIStnp
Databaze Server: LOGICA-FPCABA,
Started B - ﬁ A\
Issue 4.2.4 47

Manual ibaLogic-V4

2. Choose "Server — Autostart Server" in the tree .

3. Click on the selection box "Enable Autostart Server".

w ibalogic Server - Options

@ [Ervirorment
=W Server
[Autobackup

[Autostart Server @
a® ibalogic Server Autostart Options

Enable Autostart Server

Autostart options:

(%) Registry [recommended)

() Startup folder [user]

() Startup folder [all users)

[Autostart Server in stopped mode [not recommended)

akK] [Apply] [Cancel

4. Click on <Apply> to activate the settings.

Result
The ibaLogic Server is automatically started on Windows startup.

48

Issue 4.2.4

ibaLogic-V4

Manual

5.4.3.2 Configure General ibalLogic Server Options

The following general ibaLogic Server settings can be configured:

Server option

Display icon in the Info section

Explanation

The option, when enabled, displays an icon in the Info
section when the ibalLogic Server dialog is opened.

Display in the task bar when minimized

The option, when enabled, makes the ibaLogic Server
dialog appear in the task bar when minimized.

Display files in the backup dialog screen

Number of files that should be shown in the backup
dialog screen. This can be chosen in the "Backup folder"
selection box under "Server - Auto backup".

Display files in the restore dialog screen

Number of files that should be shown in the restore
dialog screen.

Display folders in the backup settings screen

Number of folders that should be shown in the backup
settings screen.

Procedure
1. Select the "Tools - Options" menu.

2. Select "Environment - General" in the tree.

w ibal ogic Server - Options

[=% Erviorment

[} Language
[Local PMar @
[l Server 8
Appearance:

Shaow tray icon

Recent lists:

SLINZ11E

General Server Options

Show in tazkbar when minimized

[* Efilas shown in backup dialog
23 shown in restare dialag

| 8% | folders shown in autobackup settings

Ok] [Apply] [Cancel

Configure the settings as desired.

Click on <Apply> to activate the settings.

Issue 4.2.4 49

Manual ibaLogic-V4

5.4.3.3 Settings for the Local PMAC

The local PMAC has been realized as a Windows service. Its status and start-up type
(Autostart options) are configured here.

Status setting:
Q Activate

O Deactivate

Status option Description
Activate With activate, the service, if required, is reinstalled automatically.
Deactivate By selecting between "PMAC full version" and "PMAC demo version", it can be

switched between the two run time versions.

The full version requires a dongle, hardware access is not possible in the demo
version, several functions are also disabled (no function in TCPIP_SendRecyv,
DatFileWrite, User-DLLs), even though they can be used in the project.

Configuring the autostart options (Start-up type):

Autostart option Explanation

Do not start PMAC automatically The option ensures that the PMAC service is not started
up automatically.

Start PMAC service before Windows user login | This option starts the PMAC service before the Windows
user login.

Additional option:

Run prepared project on start if available

Start PMAC service with the ibaLogic Server This option starts the PMAC service along with the
ibalLogic Server.

Additional option:

Run prepared project on start if available

Run prepared project on start if available This option causes an image of a project to be loaded
and used on start-up. The image must be prepared in
advance via a menu command in the client. If no image
is available and this option was selected, it is ignored.

50

Issue 4.2.4 m

ibaLogic-V4

Manual

Description for switching the PMAC versions

(demo or full version)

Procedure

1. Stop the PMAC in the ibalogic Server options dialog under "Environment - Local
PMAC" and then disable and uninstall it.

- ibalogic Server - Options

=W Environment
[General
[Language
P Local PMAC
@[Server

S 1 = : .
W Local ibaLogic PMAC Options
ibalLogic Prog ble M t & Aut, tion C: ller on local Windows System

s Deactivate

Uze PMAL full version, needs Dongle to be plugged into spstem
Usze PMAC demo version, no Dongle needed, no Hardware access, some functions limited

Autostart options:

(%) Do nat star: PMAL automatically
() Start PMAL Service before Windows user login
() Start PMAL Service with ibaLogic Server

Fun prepa project on start if

[StatPMaC | [Sterts Fun PMAC Stop PMAC

Activate / Deactivate:

The Programmable Measurement and Automation Contraller can be activated or deactivated on the local machine.
“Y'ou might want to deactivate the local contraller when you are working with an external device like PADU-S-T. Be
aware that you cannat create prajects for the local PMAC any mare, untl you reactivate the controller again.

Fiun prepared project on start if available:

The PMAL can save an image af the loaded praject and use it on startup. This image must be prepared with a
menu command in the client. If there iz ho appropriate image avaiable and thiz oplion iz zet, the option will be
ignored.

2. Now select the requested PMAC version (full version or demo), "Activate" the
service again (will be installed in doing so) and <Start PMAC> or, depending on the
selected autostart option, with the next server start.

3. Select an autostart option.
If the autostart service is enabled, you can choose from the autostart options

provided.

In addition, you can choose that the project should be started.

For this, it is necessary that this project has been "saved in PMAC" previously.

4. Click on <Apply> to activate the settings.

Issue 4.2.4

51

Manual

ibaLogic-V4

5.4.3.4 Language

Within this section, you configure the language of the server dialog.

The language of the client dialog has to be configured separately.

Procedure

1. Select the "Tools - Options" menu.

2. Select "Environment — Language" in the tree.

ww ibalogic Server - Options

=W Environment
[General
8 L =rguage
[Local PMAC
[Server

Language Options

Uszer interface language:

Digplay available
languages

Digplay installable
languages
Display al
languages

Language
L English
[L Geman

0K

J |

Apply

J{

Cancel

3. Select "Language options".

4. Choose the selection box with the desired language.

5. Click on <Apply> to activate the settings.

52

Issue 4.2.4

ibaLogic-V4 Manual

5.4.4 Status bar

There are 3 icons in the status bar in the ibalLogic Server dialog screen. The icons are
used to activate or deactivate the autostart and backup settings.

i!ihaLugii: Server 4.2.4

Seryver Database Tools Help

@_éfé.&
Stop
D atabasze Server: LOGICA-PChBA

Started v B X -

figure 11: Functions deactivated in the status bar

i ibalogic Server 4.2.4

Server Database Tools Help

D atabase Connection; | Installed connection b | E]
: I 1

@ Start

in’Eh:!p

Databaze Server: LOGICA-PChIBA

Stopped % - _33 A\

figure 12: Functions activated in the status bar

Icon Setting Description
e Autostart Activation causes the PMAC to be started automatically
T (Start before login) every time Windows starts up.
G Autostart (Registry) Activation causes the autostart options to be saved in the
_ﬁ registry file.
Automatic backup Activation causes the database to be backed up in
_.] accordance with the settings.

m Issue 4.2.4 53

Manual ibaLogic-V4

6 Programming Environment - ibaLogic Client
The ibaLogic Client is used to create and edit programs.
6.1 Start ibalLogic Client
The programming environment is displayed.
Prerequisite
U You have created the start icons for ibaLogic Client and ibaLogic Server on the
desktop (Standard installation).
Q You have started ibalLogic Server.
Procedure
> Double click on the "ibaLogic Client" icon on the desktop.
The ibaLogic Client dialog screen opens after a brief initialization phase.
% ibal.ogic Client 4.2.4 [LOGIC4-PC]
Fle Edt Wiew Evalustion FunctionDisgram Tools Help
i lnew - Sopen | - 1 | A = Current Flatfarm; el o
workspace Explorer Pragram Designer
L |8 | a4 [d] x
Events - 3 X
[11121/2012 2:56:45 Phi 5687] [LOGIC4-PC] ibaLogicServer] Info: iba Logic Server started
1142142012 2:56:50 PM.9594] [LOGIC4-PC] ibaLogicServer] Info: PMAC started
8 warkspace Explorer
¥ Inputs-Outputs
B Function Units
Py DataTypes
1= instances
12 Definitions
v Hierarchy
3 Evaluation Order
Local events | Server events| All events | Conscle view |
Remarks
The event window below the program window documents the program actions and
collisions, if any.
54 Issue 4.2.4 i8]

ibaLogic-V4

Manual

6.2

6.2.1

6.2.2

User Interface of Programming Environment — Editor

i“h@)

F0A Elpress | Current Platform: - Defaulti4 = @ Help.

jction Diagram ~ Tools Help i
[l wew ~ open | Bstat o) - a |\?).Zuumln 1
anksparie_Explomr p— gram Designer - NewProject2 {active)
MRECvien | L | B | 134 NewPragram (1~ |
= gl Workspace "Newworkspace2' (1 projects) Q - aluation time: N/ @
=45 NewProject2 &
=@ Configuration e
| =-A§ Resource
‘ I:g Task_MewProgram (50m, Priority: 0)

oo T[] &

Task_NewPragram? (50ms, Priority:
4 NewProgram
L~ NewProgram1

< >

78 Workspace Explorer

T T ||0402 2011 14:50:23] KFOC3CTEFBSFAET] bal ogicSerer Info: PMAC started

|Local events| Server events All events | Cansale view|

T 6

figure 13: User Interface

Menu bar 5 Programming field

Navigation area 6 Window for events

~

Toolbar Navigation buttons

A WO N -

Program designer

Menu Bar

The menu bar is the central control element of the ibaLogic Client.

File Edit View Ewvaluation Funckion Diagram Toals Help
figure 14: Menu Bar
Toolbar

The toolbar is the secondary control element of the ibaLogic Client.

P fllnew - E@Open | Siat Updete - Disconnect (@ Stop | ZoomIn 2 Zoom Out 100%] & baPDA Express | Current Platform: |0 efult @ Help]

figure 15: Toolbar

The icons of the toolbar are also buttons at the same time.

Issue 4.2.4

55

Manual

ibaLogic-V4

6.2.3

Navigation Area

The navigation area contains buttons for:

Workspace Explorer
Inputs — Outputs
Function Units

Data Types
Instances
Definitions

Hierarchy

U 00000000

Evaluation Order

Workzpace Explorer

NaiECviow]| L | & | 14 [34]

“.45 Project_First_Steps i

d @ Configuration

= ﬁ Rezource

LG Task_Partd (50m:

A3 Task_PantB (S0mm:

A2 Task_PartC (S0m:

A2 Task_PartD (50m

AT Task_ParE (G0m:

A2t Task_PantF (50m:
L2t Task_PanG t50m

~{_. Paris

i Parh s
< | »

QE Workspace Explorer

¥ Inputs-Outputs
2 Function Units

ri Data Tyvpes

l__ Inztances
l; Definitions
wiv Hierarchy

¥ Evaluation Qrder

figure 16: Navigation buttons

56

Issue 4.2.4

ibaLogic-V4

Manual

6.2.3.1

Switch Views in Workspace Explorer

There are 3 buttons in the menu bar of the workspace explorer to switch the view of the
workspace explorer. In each of the 3 views, the entries can be sorted alphabetically or
according to their priority.

IEC View

This view is the default view and shows the structure of the ibalLogic working range
according to standard IEC 61131-3.

Workzpace Explorer

‘IEC\flew L | & | si,.

4

-4 Project_First_Steps

: @ Conﬂguratlon
= h‘ Resource

o

A2 Task_PartD (50m

----- {53 Tazk_PanG (50m
i Pany
el FartR

QE Workspace Explorer

A& Task_PantC (50m:

'73 Task_PanE (50m:
C;,: Task_PanF (50m:

¥ |nputs-Outputs

; Function Units

rj-. Data Types

l_ Inztances

l; Definitions

vy Hierarchy

¥ Evaluation Order

figure 17: |EC View

Note

In contrast to the IEC61131-3 standard, only one program is assigned to each task.

Prog View
Compact display of projects and programs.

Ng |

| Prog view || & | H,EI

J

figure 18: Prog View

Task View

Presentation is arranged according to tasks

N |

L |4 Task view || “‘@

J

figure 19: Task View

Issue 4.2.4

57

Manual

ibaLogic-V4

In the process, you can choose between sorting the display in alphabetical order or by

priority.
Symbol Explanation
%‘L Sorts the entries according to names.
H, Sorts the entries according to their priority.
6.2.3.2 Instances
All blocks used in the project are listed by instance names in the instances view. The
definition name is also displayed, separated by a colon.
Double clicking on the instance name displays the program page in which the block is
placed. The block is marked in the process.
Note on difference between Definition — Instance
The definition of a block is saved in the global library. The program always contains an
instance (virtually, a copy) of the block. The instance name is automatically formed
from the "Definition namelndex". However, you have the possibility to change the
name afterwards.
When you modify the contents of a block, you also modify the definition and the other
instances.
Instances
= L F opand FunctionBlocks 4|
= [FH ADD_180D @
ﬁls_hfunﬂ |
@ T'a-skﬁl"tl:‘
£ [F] ADD_1:4DD {
= [F] ADD_1:4DD
% [F| AaDD_2:ADD
[E| ADD_24D0
£ [F] FR_1_1FB_1
[B] FB_1x 1:FB_1x
[F] GENERATOR_1:GEMERATC
* @ GEMERATOR_1:GENERATE
£ ¥
figure 20: Instances
1 Instance name 3 Task containing this block
2 Definition type
58 Issue 4.2.4 i8]

ibaLogic-V4 Manual

If a block is placed in a nested macro, it is displayed with a tree structure:

Instances
= [Function and Function Blocks

=-[F] DD_1:4DD
= MET_1:MBET

= [ME_1:ME

@3 Tazk_MewProgram

@ cTu_1.cTu
(] DELAY_1.DEL&Y
rﬂ IMT_TO_REAL_1:TYPE_TO_TYFE
i mE_1:ME

-@.'% Tazk_MewProgram
H tE1_1:MET
=- [ME_1:MB

'@ Tazk_MewProgram

-[E] NE_T:ME

]

[+

[+

figure 21: Instance view as a tree structure

6.2.3.3 Definitions

All blocks present in the project are displayed in this view arranged in the order of their
definition names. The tree structure contains instances located below the block type,
and below these, macros, if any, and finally the task with the program names.

Double clicking on the instance names displays the program page in which the block is
placed. The block is marked in the process.

Definitions
=l 4 Function and FunctionBlocks
= ADD |®
=-[f] ADD_1 Q)
& Task_PartB (3)
[F] aDD_1
& Task_Parta,
] aDD 1
[F] aDD_1
-(F] aDD_2
= [E] aDD_2
1 FB_1
[FB_1x
1 GENERATOR
3 IMPL_MB v

e

R S - 3

ad

figure 22: Definitions

1 Definition name 3 Task name

m Issue 4.2.4 59

Manual ibaLogic-V4

2 Instance name

6.2.3.4 Hierarchy

All instances of the blocks arranged alphabetically by tasks are displayed within the
hierarchy view.

Hierarchy

=& Task_Parta = @

=-{_1 Function and FunctionBlock:
(F] aDD_1 @
(El GENERATOR_1
F] sEL_
&l sLDER_1
B swiTcH_1

= '@3 Taszk_FParB

=-__1 Function and FunctionBlock:
(F] aDD_1
[l GENERATOR_1
] seL_1
(Bl sLDER_1
[El

SWITCH_1 v
< | |

figure 23: Hierarchy view

1 Task 2 Instance name

6.2.3.5 Evaluation Order

The "Evaluation Order" view shows the sequence in which the programs and blocks
are evaluated within the programs.

The blocks evaluated first are displayed at the top.

Example
2 tasks with identical interval time but different priority

Bl‘i Project_Evaluation_Crder
B@ Configuration
Bl‘i Resource
‘@ Tazk_MewProgram (50me, Priorite: 00

‘@ Tazk_MewProgram {30ms. Priorit: 1)

figure 24: 2 tasks with identical interval time but different priority
60 Issue 4.2.4 i8]

ibaLogic-V4 Manual

2E1 4

ELDER 1] ADD_1
oW o QT TR0 OUT [| Rl
il 'J ST A ol it

EEMERATOS_1
EEMTYEE
AMFLITUCE

I‘:‘i
|

figure 25: NewProgram with the following contents

The evaluation order is displayed as follows:

Ewvaluation Qrder

F- Teild

+- TeilB

= TeilC
SwITCH 1
SLIDER_1
GEMERATOR_1
SEL_1
ADD_1

+- TeillD

+- TeilE

+- TeilF

+- TeilG

figure 26: Evaluation Order

Rules for the Evaluation Order
Q The programs are executed according to the interval of the tasks assigned to them.

U Tasks that are to be started simultaneously are evaluated according to their priority,
whereby 0 is the highest priority.

U Tasks are not interrupted. This means that even a higher priority task does not
interrupt one with a lower priority that is running currently.

Q The evaluation within a program takes place in accordance with the following rules:

= Based on the data flow, those blocks generating the data are always evaluated
first. Thereafter, those are evaluated that use the data.

= |f there are multiple independent branches in a program, the supplementary rule
applicable is that evaluation takes place from the top left to the bottom right.
This means that a branch located above is evaluated first.

= In a feedback loop within a program or macro, the block placed at the uppermost
left position is evaluated first.

Issue 4.2.4 61

Manual ibaLogic-V4

A DANGER

Danger due to modifications in the Evaluation Order!

This has the consequence that (only in feedback loops) by shifting the blocks, the
evaluation order and, thus, the results may change.

Tip
In order to prevent this, it is recommended to encapsulate blocks in a macro and to

implement the feedback outside the macro. In this manner, the evaluation order is
defined uniquely independent of the positioning.

The macro block is a block. Within the macro the blocks are evaluated in accordance
with the rules given above. In other words, the output evaluated is considered as a
new input value only in the next clock cycle.

Tip

The content of a function block is evaluated in one cycle.

This means, for example, that when you access an input connector within a For loop,
you get the same value in each execution of the loop, since the connector is re-

evaluated only in the next cycle. If you wish to have a loop across multiple cycles, you
must obtain the feedback from the control variable external to the block.

6.2.4 Program Designer
Function blocks are placed and linked with one another in the program designer.
9.9 O
FProgr{m Dasigner | Proiac] First Steps. acived
st ot} ey - - | =
NPT E— e
——
o
figure 27: User interface of the program designer
1 <Back> button 5 <Release / Block> button
2 Evaluation context 6 Output area
3 Tab 7 Input area
4 Programming window
62 Issue 4.2.4 i8]

CUTPUTY

s x

ibaLogic-V4 Manual

6.2.5 Arrangement of the Tabs and Programming Windows
You can define the arrangement using the mouse.
The following options are available:
U Overlapping

U Horizontally or vertically

6.2.5.1 Arrange tabs

Proceed as follows to arrange the tabs:

Procedure
1. Click on the tab of the program concerned.

2. Keep the mouse button pressed, and move the tab to the new position.

PartA | Partf PartG | |

figure 28: Arrangement in the form of register tabs

6.2.5.2 Arrange programming windows

Dockable windows are movable windows that can be shifted to any position on the
screen and can be coupled to the docking marks.

Proceed as follows to arrange the windows:

Procedure
1. Move the mouse pointer to the tab of the window that you wish to shift.

2. Press the left mouse button and keep it pressed.

3. Move the window to the docking mark at which you wish to position the tab.

Program Designer - Project_First_Steps (active)

> x

I~ Result_ST

i85 Issue 4.2.4 63

Manual ibaLogic-V4

4. Release the mouse button. The window is now anchored at this position.

Frogram Designer - Project_First_Steps (active)
| | 4 kX |PariG x
€] i@ (DBack | Evaluation time: Hjis Freigegeben il

~ -

SWITCH_1

VAL m et NV ot V- ¥
GENERATOR_1 —
= =

‘SLIDER 1 GENTIER

AMPLITUDE
Low -
iy aml OFFSET OUT[
FERICD
PULSE

Note

Program windows cannot be positioned as desired.

The programs and macros that are opened are displayed graphically in the
programming field. Since macro blocks are displayed exactly in the same way as
programs, they are not described in the following sections.

Toolbar
You can use the following functions in the toolbar:

Q Back (&2
U Evaluation context (only with macros)

U Evaluation time (only in the online mode)

Back

You can use this button to navigate in the program window. The last selected program /
macro is displayed.

Evaluation context (only with macros)

It is used to display the program or macro level in which the current plan is located.
Since the instances of a macro block can occur several times in one or in various
programs with different call parameters, you can see the program and instance in
which the macro currently open is located.

If one macro is located in another macro (nesting), the entire hierarchy branch is
displayed separated by dots:

Display: Program_name.Macro_1.Macro_2...

64

Issue 4.2.4 m

ibaLogic-V4

Manual

You can select the context within an open macro, i. e. you can switch from one instance
to another. The values seen in the online view are always related to the instance
selected.

. To do this, click on the arrow button on the right side beside the macro instance

name.

Prograrm Designer - Project_First Steps {active)
Parta| PartF| PartG | |

©

PartE. IMPL_ME_1
PartG.IMPL_ME_1

You can select the calling level from within the macro when you click the instance
name in the evaluation context directly.

Program Designer - Praject_First_Steps (active)

Partd PartF PartG“; | |
& e v]

The area of the program field window that contains this macro instance is displayed
and the macro block is marked.

Evaluation time (online mode only)

It is displayed in each program as a percentage value with respect to the task interval
and as an absolute value in ms (smoothed mean value).

6.2.5.3 Navigating in the Program Designer

You have several options to navigate in a program:
Q Zoom

O Program overview

U Hot keys

Zoom

You have the option to enlarge (zoom in) or reduce (zoom out) the size of the
programming field in the program designer.

The following possibilities for zooming out or zooming in are available:

O Use of the buttons <Zoom in> / <Zoom out>
Q Use of the picklist
Q Use of the hot keys

Issue 4.2.4 65

Manual ibaLogic-V4

Buttons

< Press the button. L TR or Sy in the ibaLogic Client toolbar, to zoom in
or zoom out by 20 % at each click the view in the programming field of the program.

Pick list

o Select IDD%—' between the 5 preset zoom-values in the pick list

or
S Enter a zoom factor using the keyboard from 25 to 200 percent in the drop down
box (pick-list).
Key combination

2 Press <Ctrl> and roll simultaneously the scroll wheel of the mouse.

The minimum zoom factor depends on the screen resolution.

Program overview

Since one program page generally exceeds one screen page and only a partial window
of the program can be seen depending on the zoom factor, the program overview
serves as an orientation aid.

Open and use program overview

Procedure
1. Select "View - Program Overview" in the main menu.

A miniature view of the "Program Overview" window is opened in the foreground of
the current program window.

The visible section is displayed as a transparent rectangle.

2. Move the rectangle by using the mouse until you see the desired program area in
the program designer.

66 Issue 4.2.4 m

ibaLogic-V4 Manual

Annotation
The overview window can be placed arbitrarily.

It can also be docked outside the programming field or at its margin.

Program Designer - Project_Overview (active)

NewProgram | 1px
€] @

~

IPC_M t_Posifons

OTC_Venilt_{ fop ON[i——y Sy
[T IN
FT

Qr
OTC_Ventil1_1_top_DeadTime | ————em———| £ SEL 1
=

N0 QUTC=
IPC_WaterVolume top | It

f
f

IPC. PARA_Segment_length |

| R T O

IPC_Postions |
£ >

figure 29: Programming field with displayed program overview window

Navigate in the programming field
The navigation in the program window is generally done with the mouse.

In the following, the mouse functions are explained in summary:

Q Scroll wheel: Scrolling of the visible area to the top/bottom
Q Scroll wheel + <Shift>: gcrolling of the visible area to the left/right
O Scroll wheel + <Ctrl>: Zoom out/zoom in

Enlarge page to the bottom

The program page has a default width of 2500 pixel and a default height of 10000 pixel.
The visible cutaway depends on the screen resolution.

If the page size is not sufficient, enlarge the page to the bottom.

Processing

1. Open the context menu by clicking with the right mouse button on a free area in the
programming field.

2. Select "Extend page (vertical)" in the context menu.

Resulit
From the current mouse cursor position, a range of 800 pixel lines is added.

Issue 4.2.4 67

Manual ibaLogic-V4

Annotation

Important note

Please ensure that there are no blocks in the horizontal line of the mouse pointer.
Connecting lines that cross this intended horizontal line are extended.

Note

You cannot remove an empty page within the task using any function. An empty area
at the lower end of the task is removed automatically when loading a project.

Tip
An empty space within the tasks can be achieved by reducing the zoom-level and
shifting the objects jointly.

6.2.6 Synchronize Access (<Read write>/<Read only> buttons)
During the multi-client operation the access to windows and dialogs can be
synchronized by the buttons <Read write>/<Read only>.
¥
figure 30: <Read write> button
L
figure 31: <Read only> button
6.2.7 Events Window
The "Events" window below the "Program Designer" window documents the program
actions and collisions, if any.
The events window is divided into 4 views with the help of tabs.
You can choose from the following views:
U Local events
U Server events
Q All events
A Console view
Event icons are used in the "Local Events", "Server Events" and "All Events" views.
Event icon Event Level Description
- Info Info Displays information
L
"‘11‘
ﬂ Warning Warning Displays a warning
X Error Exception Displays an error
68 Issue 4.2.4 i8]

ibaLogic-V4

Manual

6.2.7.1

6.2.7.2

6.2.7.3

6.2.7.4

Local Events

You can use the "Local Events" view to display events of the client in a formatted

manner.

|’ Level Timestamp + Module

Computer Message

Local events| Server events | All events| Console view

figure 32: Events window — "Local Events"

Server Events

The "Server Events" view is used to display events pertaining to the server.

| Level Timeskamp * Module Computer Message
j‘J Info 04-02-2011 14:56:23:954 ibalogicServer 4FOCSCTEFBSF4ET iba Logic Server started
}(Exception 04-02-2011 14:56:23:390 ibalogicserver 4FDC3CFEFBSF4E]l Synchronizing of external (DLL) Function block sampleDil Failec
j‘) Infa 04-02-2011 14:56:23:046 ibalogicServer 4FOCICTFEFBSF4E] PMAC started
~
[<] i |

Local events | Server events | All events| Console view

figure 33: Events window — "Server Events"

All Events

You can use the "All Events" view to display events of the client and the server in a
formatted manner.

| Level Timeskamp * Module Computer Message
j|) Info 04-02-2011 14:56:23:954 ibalogicServer 4FOCICTEFBSF4E] iba Logic Server started
¢ Exception 04-02-2011 14:56:23:390 ibalogicServer 4FOC3CTEFBSF4ED Synchronizing of external (DLL) Function block sampleDil Faile:
j) Infa 04-02-2011 14:56:23:046 ibalogicServer 4FOCICTEFBSF4E] PMAC started
b
| n |

Local events| Server events |All events | Console view

figure 34: Events window — "All Events"

Console View

The "Console View" is used to display all events as simple text sorted chronologically

according to their occurrence with the corresponding explanation.

[04.02.2011 14:56:23] MFOC3CFEFBEF4ET] [ibaLogicServer] Exception: Synchronizing of external {DLL) function black sampleDll failed
because the var name a is notvalid
[04.02.2011 14:56:23] [FOC3CFEFBEF4ET] [ibaLogicServer] Info: iba Logic Server started

[04 0220171 14:57:24] AFOC3CFEFBAFAET] [ibalogicServer] Info: Setting PRAC connection to: localhost
[04.02.2011 15:03:56] MFOCICFEFBSF4ET] [ibaLogicServer] Info: Setting PhMAC connection to: localhost
[04.02.2011 15:05:11] MFOCICFEFBAF4ET] [ibaLogicServer] Info: Setting PhAC connection to: localhost

% |

Local events| Server events| All events |Console view

figure 35: Events window — "Console View"

Issue 4.2.4

69

Manual ibaLogic-V4

6.3

6.3.1

Workspace

You can use a workspace to save programs and projects in a sorted manner.

Create Workspace

Prerequisite

You have not opened any workspace.
You can close any workspaces that are open via "Close workspace - file".

Procedure
1. Click on the arrow of the <New> icon in the toolbar.

2. Select the "New Workspace" menu entry from the list.

EF ibal.ogic Client 4.2.1 [4FOC3CTEFB

File Edit Wiew Evaluation Function

WNBW v|i§©pen |i5tart e -

I;IE Mew Workspace, .. F

-“' Mew Project. .

e | Mew Program... ce2' (1
= "": NewProject2
@ Configuration
‘i Resource
@ Taszk_MewProgram
: ’!ge Taszk_MewProgram
il MewProgram
{_,,, MewPragrarml

The "Add Workspace" dialog box is displayed.

3. Assign a name and a description for the program.
ibaLogic creates a new project and a task automatically. Assign meaningful names
and descriptions that also conform to the IEC standard.
If required, define also the interval time and its priority for the task.

Add Workspace
Workspace

Mame: ENewWorkspaceZB
Description:
Praoject
Marne: ;.NEWPID\ECG
Description: i
Program
M ame: !-P:l.ev.\;};-;;ogram
Description; |
Task
(&) Interval 503 ms

Fricrity [0% | - Highest priory

[Ok] l Cancel

70

Issue 4.2.4 m

ibaLogic-V4 Manual

6.3.2

6.3.3

Remark
You can modify all settings later on.

You can modify the settings via the respective context menu for
"Properties".

A name that has already been assigned is displayed with an "X" at the end of the input
field.

Matmne: |MeswaMorkspace! }(

You can fill the fields for the description with any comments as you please. These
comments are displayed above the object as a tooltip.

Notes

The names must comply with the IEC standard. For further information refer
to "Naming conventions, Page 277".

Tip
You can set the default value for the names under
"Tools — Options — Editors — Workspaces".

Open workspace

Procedure
1. Press the <Open> button. The "Open Workspace" window is displayed.

2. Select the desired workspace and click <OK>.

Close Opened Workspace

Select the workspace in the "File — Close Workspace" menu.

Issue 4.2.4 71

Manual ibaLogic-V4

6.3.4 Remove Workspace from the Database
Procedure
1. Click on the <Open> button. The "Open Workspace" window is displayed.
2. Mark the workspace that needs to be removed.
3. Open the "Remove Workspace" context menu by clicking on the right mouse
button.
Open Workspace
‘Workspace name Date created Date modified Created by
Mewworkspace 02.11.2010 14:4E:4E 04.02.2011 15:08:10 MAN_SCH145
Neww/okspace] 16.11.200016:10:16 23.11.2000 22:22:27 4f0c3cTefbSidel
Hewworkspaces 04.02.2011 14:57:22 04.02.2011 16:49:11
Remove Workspace |i
[oK] [Cancel]
4. Click on "Remove Workspace". The "Remove Workspace" dialog box is displayed.
5. Confirm with <Yes>.
6. Confirm the procedure with <OK>. The dialog box is closed.
72 Issue 4.2.4 i8]

ibaLogic-V4 Manual

6.4

6.4.1

Workspace Projects
ibaLogic automatically creates a project while creating a new workspace. You can
create more than one project within one workspace.

Prerequisite
O You have started the ibaLogic Server and the ibaLogic Client.

U You have created at least one workspace.

Create Project

Procedure

1. Click with the right mouse button on the workspace name to which the project
needs to be added in the Workspace Explorer.

2. Select "Add - New Project" in the context menu.

E¥ ibaLogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File Edt View Evalustion Function Diagram Tooks Help
{ @new - EEOpen | B start - A, | 5 ZoamIn ©L Zoom Out 100%
\Warkspace Explorer | Program Designer

L@ W [T \

Add b | §E NewProject

|| New Program...

The "Add Project" dialog box is displayed.
The dialog box that opens is the project-specific section from the workspace dialog.

Assign a name to the project and the program. Assign meaningful names that
conform to the IEC standard. If required, set up the interval time and priority for the
task.

Add Project

Project
Mame: iNewProiect2 |
Descriptior: | |
Frogram
Marne: |MewProgram |
Description: | |
Task
@ Interval | §D$' s
Prioiy. | 04| 0 Highest ooy
Ok] ’ Cancel
Issue 4.2.4 73

Manual

ibaLogic-V4

6.4.2 Set Project as Active
Note
Only one project of many can be active within a workspace.
Procedure
1. Open the context menu of the project to be activated by clicking on the right mouse
button.
2. Select "Set As Active Project".
‘wWorkspace Explorer FPro ‘wWorkspace Explorer
N ECview | L | 5 | 14 [84] Fa NaEcven | L. | & | 14 [3]
= ';E ‘Workspace 'Wew'workspace' (12 projects) . Q = I;IE ‘Wotkepace 'Newwarkzpace' {12 projects)
-4 Project_Datatypes + N8 Project_Datatpes
ﬂ" Froject_DatFile'rite_Buffered ® ‘: Project_DatFileWwrite_Buffered
i‘i Project_DatFilewrite_Unbuffered ‘5 Project_DatFilerite_Unbuffered
i‘: Praje irst_Steps % Project_First_Steps
+ @ Canfiguration Add 3 @ Configuration
{_,, Parté Load in designer
L'— PartB Set As Active Project
el PanC
. ParD Remove
bl PartE Export Ta 5T...
el Partf :
L,—- Pani Properties
Result
The name of the active project is displayed in the Workspace Explorer in "Bold" and
the associated icon changes its color from blue to pink.
\ Notes
If any project is in the online mode (programming field background is pink), no other
project can be set as active.
By setting a project as active, the programs of the project are not loaded automatically
in the design area, but need to be selected manually as required.
The buttons in the toolbar and in the Workspace Explorer are only valid for the active
project. These are:
Q <Start>
U <Stop>
U <Disconnect>
U <Current target system>
U <I/O configurator>
74 Issue 4.2.4

ibaLogic-V4 Manual

6.4.3

6.4.4

6.4.5

Load Project in the Program Designer

Regardless of whether a project is active or not, you can load programs in the design
area.

Procedure
1. Mark the project that you would like to load in the designer.

2. Select "Load in Designer" in the context menu.

Result
The programs loaded are displayed as tabs at the upper border of the design area.

Edit Project Properties

You can modify the name and description field in the project properties. You can enter
supplementary information about the project in the "Description” text field.

Procedure

1. Click with the right mouse button on the project whose project properties you would
like to edit.

2. Select "Properties" from the context menu.
The "Edit" window is displayed.

3. Edit the properties of the project.
4. Click on <OK>.

Remove Project

The project selected is removed from the workspace and from the database at the
same time.

Procedure

1. Click with the right mouse button on the project that you would like to remove from
the workspace.

2. Select "Remove"in the context menu. The "Remove Project" dialog box is
displayed.

3. If you are sure that you would like to remove this project from the workspace, click
on <OK>.

4. If the project has been deleted, the "Project removed" dialog is displayed for
confirmation.

5. Finally, click on <OK>.

Issue 4.2.4 75

Manual

ibaLogic-V4

6.5

Tasks/Programs

ibaLogic creates a program automatically while creating a new project. You can add
other programs to a given project.

Notes

Please keep in mind that you cannot delete the last task. One task must always be

present for each project.

6.5.1 Create Tasks / Programs

Procedure

1. Click with the right mouse button on the project in which you would like to create a
new program.

2. Select the "Add - New Program" from the context menu.

File Edit Wew Evaluation Function Diagram Tools Help
P @new ~ SAopen | B start - | L, Zoom In Z), Zoom Qub 100% -
‘Workspace Explarer Program Designer - Project_Erste_Schritte
W IEC View “L_,_ | 42 | ;&@ Teild Teils | \
=] QE Workspace 'Mewworkspace' (10 Projects) Q
'J--I% Project_Datentvpen —
[ﬁ‘. Project_DatFile'w'rite_Buffered —
[I" Project_DatFilerite_Unbuffered M_m
-8 Configuration Add % ﬂ Mew Project
bl Teild Load in designer | Mew Program...
Ll Teilm =y
il TeilC [
~{ TeilD
bl TeilE Export To 5T...
Ll TeilF : SR
L.— Teils Properties ?:?1,‘:31
The dialog "Add Program" is displayed.
Add Program
Program
Marne: i:NewF'mgram g
Descriptiorn: | |
Task
(&) Interval | 50_?;: Tz
Friciriby: [D__¢I - Mgt prion
I Ok] [Cancel]

3. Assign a name and a description for the program. An associated task is created at
the same time. Assign meaningful names that comply with the IEC standard.
Further information see definition in "Naming conventions, Page 277".

4. Click on <OK> to add the new program.

76 Issue 4.2.4

ibaLogic-V4 Manual

6.5.2

6.5.3

Exactly one task is assigned to each program. You can choose from the following task
parameters:

Q Interval time

U Priority

Interval
The program belonging to the task is restarted exactly after the specified interval time.
If, under extreme circumstances, the evaluation time (or the evaluation of all programs)

is greater than the specified interval time, the system is overloaded. How to proceed is
explained in "Time behavior, Page 230"

The default value is 50 ms. The smallest interval possible is 1 ms, but the time interval
cannot be less than the timebase set in the 1/0 configurator.

Notes

You can change the default values for the program name and the time interval under
"Tools — Options — Editors — Workspace".

Priority
Each task is assigned a priority. "0" means highest priority.
Please note that no task can be interrupted by another having a higher priority. The

priority is relevant only for the order of evaluation. For more information, please see
"Time behavior, Page 230".

Notes

You can display the tasks either in alphabetic order or in the order of their priorities in
the workspace.You can use the icons at the upper border of the navigation section for
this purpose

Open Tasks/Program

Double click on the program name in the Workspace Explorer.

Change Task / Program Properties

Change the properties of existing tasks / programs.

Procedure
1. Click with the right mouse button on the corresponding task or program.

2. Select "Properties" in the context menu. The "Edit" window is displayed.
3. Change the properties.
4. Finally, click on <OK>.

Issue 4.2.4 77

Manual ibaLogic-V4

6.5.4 Remove Task / Program

Remove a program / task from a workspace.

Procedure
1. Click with the right mouse button on the corresponding task or program.

2. Select "Remove" in the context menu. The "Confirm" dialog box is displayed.

3. If you wish to remove the program, click on >Yes>.

Notes

Please keep in mind that you cannot delete the last task. One task must always be
present for each project.

6.5.5 Import / Export Programs

To exchange complete programs between projects of different data bases exist
export/import functions.

Export procedure
1. Click with the right mouse button on the correspondent program.

2. Select "Export to ST" in the context menu. The "Export" dialog box is displayed.

3. Call up the file browser, select a directory, enter the filename and click on
“Save”.

4. Enable the option “With additional graphical information...” and click on OK.

Import procedure
1. Switch off the calculation because the import is only available in the offline mode.

2. Select "File—Import-Structured Text" under main menu.
The “Structured text import” dialog is displayed.

3. Call up the file browser and select directory and file (with file extension *.il4) and
press “Open".

4. Select the option “Import definition of Function blocks as new” and click on OK.

78 Issue 4.2.4 @

ibaLogic-V4 Manual

During the import, the names of the function blocks and data types to be imported are
compared to already existing names. If names are already assigned, the definitions are
overwritten (TRUE) in relation to the option: “Import definition of function blocks as
new” or a new definition is created with name+index (FALSE).

The imported program is newly created together with the task. If the program name is
already assigned, they are created with name+index.

During the import of a project, all programs and tasks in the project are newly assigned,
probably with “name+index”.

Note

For export/import description for blocks refer to "Exporting Blocks, Page 93" or
"Importing Blocks, Page 94".

Issue 4.2.4 79

Manual ibaLogic-V4

6.6 Configure Inputs and Outputs
Inputs and outputs are are routed signals to peripheral devices.
You work with "virtual" signals in the programming environment. You must assign these
using an allocation process to hardware signals that are actually present.
You can do this assignment from the viewpoint of the program or that of the hardware,
for each signal separately or for groups of signals.
Important note
For more information, please refer to "IO Configuration, Page 175".
The inputs and outputs of the hardware are arranged in a tree structure within the
navigation section of the 1/0 configurator.
The hierarchy levels are:
Direction - group - signal subdivision - signals
U Direction:
"Inputs"” or "Outputs”
Q Group:
group name either created manually or taken over from the module name of the
signal assignment.
Q Signal subdivision:
The signals are divided in analog and digital signals.
Q Signals:
= signal name either created manually or taken over from the name of the signal
assignment.
= behind that the data type in brackets,
= then the hardware signal name to the right of the arrow (->)
80 Issue 4.2.4 i8]

ibaLogic-V4 Manual

Inputs-Outputs
“for e curant seleckad pdatfarm

o = Inputs
% [Globalvariables
2 02 Motora
= 0= Analog
fD hdotord,_M_|zt{lnt) -> FobFOORMOOInARa00
fD kotord_Tailnt) -> FobFOO0MMO0INARa0T
fD kotord_Status(Int) -> FobFOORMOOINANEDZ
2 02 MotorB
= 0= Analog
tt) katarB_M_lst{lnt) -> FobFOORO0InARa08
fD hotorB_Ta(lnt) -> FobFOORO0InARa04
fD rotorB_Status(int) -> FobFOOMOOINANRa10
= [= Cutputs
03 Glabalvariables
= 03 Motora
- 0= Analog
f‘ rotord_Solkhwert(int) > FobFO0RMOOOutdnall
f‘ katord_Freigabe(lnt) -> FobFO0MODOutAna0
2 02 Motork
= 0= Analog
fi hotorB_Sollwert{nt) -> FobFOORMO0Outinals
:‘ taotorB_Freigabe(nt) -» FobFOOMOOQuténald

figure 36: Inputs - Outputs

6.6.1 Create Signals

Signals are assigned to groups. This facilitates meaningful structuring.

6.6.1.1 Define Group

Procedure

1. Click with the right mouse button on "Inputs - Outputs" and select the menu item
"Add group".

Inputz-Cutputs

el inpuisg

= = Outpu Add Group
Expaort Configurakion

2. You determine the name for the new group in the dialog “Setup group name”.

i85 Issue 4.2.4 81

Manual ibaLogic-V4

Result

The new group is created under “Inputs” as well as "Outputs".
Groups which are not necessary can be deleted by means of the context menu and/or

the DELETE key.

Example
Groups:

Input signals:

Output signals:

Motor A, Motor B
Actual speed, motor temperature

Set-point value, parameter

|nputz-Cutputs
= 0= Inputs
= 04 Globalvariables
0= rotors,
0= Motork
= 0= Cutputs
0= Globalvariables
0= rotors,
0= Motork

figure 37: View "Inputs — Outputs”

6.6.2 Define Signals
Procedure
1. Click with the right mouse button on an input or output group.
2. Select "Add input" or "Add output" in the context menu.
The "Edit inputs and outputs" dialog will be opened.
82

Issue 4.2.4 m

ibaLogic-V4

Manual

3. Assign a signal name, data type and, a description, if any. Assign meaningful

names that conform to the IEC standard.

Inputs-Outputs
* far fhe currant safacfad plaffon

= [= Inputs
= [Globalvariables
= [= Analog
B SYSTEM_UTS TIME{UDInG -» SYSTEM_UTS TIME
P DONGLE_NUMEER{UDint -> DONGLE_NUMEER
B ACG_RESTART_COUNT(UDIRG -» ACG_RESTART_COUNT
P LAST_DRIVER_ERROR(Dword) -» LAST_DRIVER_ERROR
= 0= Digital
B wWATCHDOG_BITE(Bool) - WATCHDOG_BITE
0=

0= Motorl #dd Input [IN5]
= 04 outputs fidd Group [INS]
(5 Globa Remave Group [DEL]
0= Mot

Export Configuration

0= Motar

Properties

Edit inputs and outputs

It M anne:

[DataType:

Description: | |

’ 0K] ’ Cancel]

Please note that for the data type, this is provided by the peripheral device. If the

analog value from an ibaPADU-8 is used, for example, it is always an integer value.

Issue 4.2.4

83

Manual

ibaLogic-V4

6.6.3

6.6.4

In our example, the following scenario would emerge:

Inputz-Cutputs
*far fire curaniie sefecfad gl

- [= Inputs
3 Globalvariables
2 02 motars,
- 0= Analog
B rators_N_Istng
B Motors_Tating
tt> kdotord_Statuzlnt
2 03 MatorE
- [= Ciutputs
0= Globalvariables
2 02 motars,
- 0= Analog
*4 Motors_Sollwert(Ing
f‘ hdotord,_Freigabeilnt)
2 02 motark

The signals have not yet been assigned to any hardware.

Edit Existing Signals

Procedure

1. Double click on a signal that has been defined.

The editing dialog box opens.

2. Assign a signal name, data type and, a description, if any. Assign meaningful

names that conform to the IEC standard.

3. Click on <OK> to accept the modifications.

Remove Signals

Procedure

1. Click with the right mouse button on a signal that has been defined.

The context menu opens.

84

Issue 4.2.4

ibaLogic-V4 Manual

2. Select "Remove Signal" in the context menu.

Inputs-Cutputs
* for fiva curenti; sefecfed plaffonm

= [= Inputs
= 02 Globalvariables
= 0= Analog
B SYSTEM_UTC_TIME{UDint) -» SYSTEM_UTC_TIME
P DONGLE_NUMBER(UDint -> DONGLE_NUMEER
P ACO_RESTART_COUNT{UDIM) -> ACO_RESTART_COUNT
P LAST_DRIMER_ERROR(Dword) -> LAST_DRIVER_ERROR
= 0= Digital
B WATCHDOG_BITE(Bool) -» WATCHDOG_EITE
[Motars,
® 9 MotarB
= 0= Cutputs
4 Globalvariables
= 03 Motora
= 0= Analog
f‘ ho yyerti] it
*& Motars_Freigabedlr fidd Graup [INS]
= 0= MotarE Remowve Signal [DEL]

Export Configuration

Goto -

Note

You can edit and remove inputs and/or outputs only if you do not yet use them in the
program, i. e. they are not yet visible in the input and/or output bar.

Note

The assignment of the signals defined here to the hardware available is described in
the "Signal assignment, Page 182" section.

Important Note

The interface cards of third party manufacturers sometimes do not provide individual
signals with the elementary data types, REAL and INT. A data structure as an input /
output is generated here for the Profibus master card SST, and it depends on the
configuration of the slave (GSD file). You must also define this structure in ibalLogic to
be able to use the signals included there.

An example of the connection of the Profibus master card is documented and included
in the CD supplied.

Issue 4.2.4 85

Manual

ibaLogic-V4

6.6.5 Export / Import Signals
The virtual signal names are often already provided in external documents. Use the
export and import functions in order to use them.
Exporting the entire I/O configuration
Procedure
1. Open the context menu of a group or of a signal and select the menu option
"Exporting configuration".
Inputs-Outputs
* for fhe curantl safectad plaffon
- [= Inputs
= 2 Globalvariables
= DEI b otordy
3 anal Add Input [IMS]
jt) b add Group [IMNS]
ft) I Remaove Group [DEL]
tt) I' Export Configuration
= 2 MotorB
= 03 Anal Properties
B dotorB_N_Istint)
B MotorB_Tailnt
B MotorB_Status(int
= = Qutputs
5 Globalvariables
= [0 Motara
= [= Analog
4 Motors_Sollwert(Ing
*&q Motord_Freigabetint
= 2 MotorB
= [= Analog
4 MotorE_Solkwer{nt
fi hdotorE_Freigabednt)
2. Open the export, for example, in a spreadsheet program.
3. Enter the virtual group designation and signal name in the group and icon columns
or modify the existing names.
Adresse; Typ: InOut ; Gruppe; Symbol; Kommentar
FobhDOOMOOInAnaOO: INT: Input : FohDOOMOO; FohDOOMOOInAnalO;
FobDOOMOOInAna0l; INT; Input; FobDOOMOO; FobDOOMOOInAnaOl;
FobDOOMOOInAnaO02; TNT; Input; FobhDOOMOO; FobDOOMOOInAna02 ;
FobDOOMOOInAna03; INT; Input; FobhDOOMOO; FobDOOMOOInAna0s ;
FobDOOMOOInAnalO4: INT; Input; FobDOONOO; FobDOOMOO InAnadd;
FobDOOMOOInAnals,: INT; Input; FobDOONOO; FobDOOMOOInAnads;
FobDOOMOOInAnade; INT; Input; FobhDOOMOO; FobDOOMOOInAnaos:;
FobDOOMOOInAnald?: INT; Input; FobhDOOMOO; FobDOOMOOInAnao'y:;
FobDOOMOOInAnaldS,: INT;: Input; FobhDOOMOO; FobDOOMOOInAnaos:;
— S F] C_ﬁl 5 = =
1 |Adresse Typ InOut Gruppe Symbol Kommentar
2 |FobFOOMOOInAR&DD INT Input FobFOOMOD FobFOOMOOInARaDD
3 |FobFOOMOOINARED1 INT Input FabFOOMO0 FobFOOMO0InAREDT
4 |FobFOOMODINARED2 INT Input FabFOOMO0 FobFOOMOOInARE02
86 Issue 4.2.4

ibaLogic-V4

Manual

4,

Import the signal

assignment".

assignment by using

&S ibalogic Client 4.2.4 [LOGIC4-PC] - NewWorks pace

Edit

Wiga
Yl | mew

_'Ia Open

| Close Workspace

Import. .,

#

E Page Setup
g Prink Preview
|

Print Strg+P

Recent Workspaces

Connect ko Server...

| 2| Exit

Evaluation

v Bdate

3

Function Diagram

Tools

Help

Cton | E) Zoom In S, Zoam

Program Designer

| Structured Text...

Signal mapping. ..

the menu

The "Importing signal assignment" is displayed.

5. Specify the file name with the target path.

Import signal mapping

Select the import file;

Import File |

Lo I

Cancel]

6. Click on <OK> to start the import.

item

"File-lImport-Signal

Issue 4.2.4

87

Manual ibaLogic-V4

6.6.6

Using Signals in the Program

To be able to use signals in a project program these must be dragged to the input or
output sidebar.

Processing

=

Drag the desired individual signal or the entire group to the sidebar of the input or
output.

E ihal ogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File Edt Wiew Ewsluation Function Diagram Took Help
i [@rew - SHopen | B Start - : 1 | % zoom In =Y Zoom Out 100% - @

Inputs-Cutputs Program Designer
¥for fhe curenti; selecied plalform | |

== Inputs
® 09 Globalvariables
= 02 Motara,
= 0= Analog
B Motors_N_lstlint
B Moatars_Tating
B Motors_Status(ing

- I3 MotorE Motora N_Ist|—
=] fulialy
= MotorA _Ta[
= D:analng MatarA_N_Ist
P MotorB_M_lsting MotorA_Stahs ['(actu3l Speed value [rpm]) F———
B MotorB_Talnt INT(Defaul: 0} |
f& MotorB_Status(inf) Giolptiotaratandlog
@ = Outputs
Example

The signal "MotorA_N_Ist" has been dragged to the input sidebar.
When you point with the mouse on the connector symbol of the signal, a tooltip is
displayed with information pertaining to this signal.

If

you drag an entire group to the sidebar, all individual signals are placed there. If

certain signals of the group are already placed in the sidebar, the following warning
message is output.

Warning(s) while creating 10s

Some I0s will not be created because:
- An 10 variable with the same name already exists: [Mokors_M_gct]
Do ywou want ko proceed amyway, with the valid items?

Yes] ’ Mo]

Note

For further information please see "IO Configuration, Page 175".

88

Issue 4.2.4 @

ibaLogic-V4 Manual

6.6.7 Remove Signals in the Program

Procedure
1. Mark the signal in the input or output bar.

2. Press the function key.

Remarks

You can make multiple selections by clicking the left mouse button and pressing the
<Shift> key simultaneously or by dragging a rectangle using the left mouse button
(Lasso) over the signals concerned. Please note that the rectangle must completely

enclose the signals.

File Edt Wiew Evaluation FunctionDiagram Tools Help

: fllnew - GAopen | B start te S ctop | E), zoom In) Zoom Ot 100% - @

Inputs-COutputs Program Designer - Project_In_Cut (not active)

[Globalvarisbles o
= [Motors,
5 Motar®s
= [L2pooroosoo &
B L2B00MO0S00InAna00(NY) -> L2BOOI

2 0= inputs ~ |

B L2B00RMO0S00InANa0T (Ing -> L2EODI

B LZBO0MODS00InANaD4(InG -> LZEO0I
B L2BO0MO0S00InANa05(Ing -> LZEO0I
B L2B00MODS00InAn DB -> L2EO0I

B L2B00RMO0S00InANa09(InG -> L2BODI

78 ‘workspace Explorer

P L2B00MO0S00InAna02(nY -> L2B0OI L2B00MO0300InANE0
P L2B00MO0S00InAna03(nt -> L2B0OI L 2B00M00S00InANaDT
L2B00MO0S00InANal2
L2B0OCMO0S00INANADS
P L2B00MODS00InAna07(Int) -> L2BOOI L2B00MO0S00INAND4
I L2B00MD0S00InAN208(ng -> L2B00I L2BOOMO0SO0INANEDS

o L2B00MO0S00InANADE
P L2BOOMO0S00InenaTo@ny > L2BODI | § o T
P L2B00MD0S00InANa11 (Inf > L2BODI s
< 1 5 L2B00MO0S00InANaDE
L2B00MO0S00INANAlS

Snaln

¥ Inputs-Outputs

:i Function Units

nAnall

& Data Types

1_’. Instances

lam &

nAnal2

E§ ihalogic Client 4.2.1 [iba-fue-wis082] - NewWorkspace

File ~ Edit Wiew Ewaluation Function Diagram — Tools Help
mNew - =3 Open |'Start date = L Bl Stop |QZnnmIn QZnanut 100%. -
Inputs-Outputs Program Designer - Project_In_Cut {not active)
= 04 Inputs % J |
w [Globalvariables o
@ 02 Motara
04 Matard
= [LeBoomooson 3
f& L2B00MO0S00InARaDO R -> L2BO0I
f> L2BO0MO0S00InARaDT {Int) -> L2ZBO0I
f> L2BO00MO0S00InARalZ{Int -> L2BO0I
B L2B00MO0S00InARa03 It -> L2EO0I L2B00MO0S00InAnal0
f& L2B00MO0S00InARaD(Int) -> L2BO0I L2B00MO0S00InAnal
P LZEOOMODS00InAna0E(Int > LZE00I R
:> L2B00RMO0S00InARalE Nt -> L2BO0I T
n.
ib L2BO00MO0S00InAnalF{Int -> L2B0O0I
*B L2B00MO0S00InENa0S (Nt -> L2E00I BERALA LIS
*B L2B00MODE00InAN A0S -> L2B00I | 2B00MODOS00IN Anals
*B L2B00MO0OS00InERaTOfnt -> L2E00I L 2BODMODS0DINANE0S
f& L2BO0RMO0S00InAnaT 1{InG -> L2ZBO0I | 2E0OMO0S00InARADT
< | ¥
B | 2BOOMO0S00INANADE
QE ‘wiorkzpace Explorer | 2BO0MO0S00InANADS
¥ Inputs-Outputs L2BOOMO0S00INANAT0
B Function Units L2B00MO0S00INANar1
IL Data Types | ABAALINACARLA A m a1 |
l__ Instances -
2+ &

Issue 4.2.4

89

Manual ibaLogic-V4

Program Creation

Blocks

In ibaLogic, a large number of function blocks are provided in a global library.

In addition to the function blocks defined in accordance with the IEC 61131-3 standard,
iba also provides its own function blocks and user blocks. These are listed in the
navigation area of the "Function Blocks" view.

Each function block contains an icon.
The icons have the following meaning:

iba blocks

B B B B

Blocks of the IEC 61131-3

Functions that are available in the form of a DLL

M Function blocks and macro blocks created by the user

The function blocks are listed in groups and sub-groups that are sorted alphabetically
according to the IEC 61131-3 specification.

Function Units

#-1d CHARACTER_STRIMG
[COMMUNICATION
- COMPARISON

- TYPE_COMNYERSION
m Project_Datatypes

- Project_Ethic

m Praject_First_Steps
#-IEl Project_Owverview

m Project_In_Cut

- Project_PIDT1_RAMP

+m Project_kdakro

Qi BRI=law &

figure 38: Function Blocks "Global Library"

figure 39:

Function Unitg

= Global library i~ [=EERE Gilobal librar
+.__i AMNALYTIC -4 AMALYTIC
- ARITHMETIC = __I ARITHMETIC
-0 BISTABLE £ GENERAL
-1 BIT_STRING LOGARITHMIC

TRIGONOMETRIC

#-53 COUNTER [expr

[CUSTOM [FrRaND

-3 EDGE_DETECTION] mop

@1 REGISTER (E] MuL

-0 SELECTION .- [E] suB

-3 SIGNAL_PROCESSING 1 BISTABLE

&3 SPECIALS - BIT_STRING

.03 TIMER "3 CHARACTER_STRING

B COMMUNICATION
-0 COMPARISON
&-L0 COUNTER

+ﬁ CUSTOM

i+ EDGE_DETECTION

The "Global Library" also contains the folders ,CUSTOM" and

"NEW PROJECT".

Function Blocks "Arithmetic"

90

Issue 4.2.4

ibaLogic-V4 Manual

711

CUSTOM
There, all global user blocks and functions being available as DLL are placed.

SPECIALS
The "Specialties" of ibaLogic are stored here. For more information, please refer

to "Specials, Page 301".
Using Blocks
You can use all blocks from the global library and the project library in a given project.

If you wish to use a FB from the global library, you can use Drag & Drop to move it into
the programming window.

You have no access to blocks that you have defined in a project of another workspace.

Important Note

When you modify the contents of a block, all instances and the definition of the block
are modified.

If you would like to modify the form, i. e. inputs and outputs or internal variables, you
will be asked to specify another name for the definition. In this case, a new block type
is created, the old definition and its instances remain unchanged.

However, this is only the case if more than one instance is available.

Procedure
1. Select a block that you wish to place in the programming field.

2. Drag & Drop the block selected in the "Function Block Overview" at any position
that is free in the programming field.

= ibalogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File EBdt Wiew Evaluation Funchon Liagram lools Help
éml\ew ~ 3 Open ‘Start - |—1 Zoom In ‘=L Zoom Out 100% > = Current Platform: Default
Funciion Units Program Designer - NewProject
o (3 EDGE_DETECTION ~ 1
41 REGISTER e :
-3 SELECTION
off] LM
(] b ST
- E MmN
L[] hLY, VAL m:wr
i EI SEL=
3-C3 SIGNAL_PROCESSING EIET
-1 SPECIALS == SEL 1
43 DISCONTINUED o ==
(] DAT_FILE_wRITE il
~.[] EVALTIMES SUIDER_1
e ﬂ FUZZY_CONTROLLER Low = ouT
¢ S HigH W ouT
—_—
I;IE ‘Workspace Exalorer
GENERATOR_!
¥ Inputs-Outputs GENTYPE
: - : AMPLITUDE
:3 Function Units et
PERIOD
r‘- Data Types FULSE
l_— Instances
l; Definitions
i Hisrarchu $
Issue 4.2.4 91

Manual ibaLogic-V4

71.2 Create User Blocks
You can create a block in different ways:
Q In the program
U Under the project
U In the global library
7.1.21 In the Program
Creating an FB or MB within a program.
Procedure
1. Click with the right mouse button at any free location in the programming window.
2. In the context menu, select "New... - New Function Block" or "New... -
New Macro Block". The "Create Function Block" window is displayed.
3. Create your block.
4. By pressing <OK>, the block is created if there are no syntax errors.
7.1.2.2 Under the project
Creating an FB within a project.
Procedure
1. Open the "Function Blocks" view.
2. Switch to the project folder.
3. Click in the function tree with the right mouse button on the desired project.
4. In the context menu, select
"New... - New Function Block" or "New... - New Macro Block".
The "Create Function Block™ window is displayed.
5. Create your block.
6. By pressing <OK>, the block is created if there are no syntax errors.
7.1.2.3 In the Global Library
Creating a FB within the global library.
Procedure
1. Click with the right mouse button in the global library on the "CUSTOM" group.
2. In the context menu, select "New... - New Function Block" or "New... - New Macro
Block". The "Create Function Block" window is displayed.
3. Create your block.
4. By pressing <OK>, the block is created if there are no syntax errors.
92 Issue 4.2.4 i8]

ibaLogic-V4 Manual

713

71.4

Note
Difference between Definition - Instance

For more information, please see "Instances, Page 58".

Managing Blocks

Copy to the global library

If you would like to use a block, which you have defined in a program or project, even
in other workspaces, you must copy it to the global library.

Procedure
1. Click with the right mouse button on the FB that you would like to copy.

2. Select "Copy to the global library" in the context menu.
The block is copied into the "CUSTOM" group.

Note

A block that has been copied into the global library has the properties of the time point
when it was copied. If the FB in the project path is modified, these two blocks are
different.

Note

You cannot copy or move FBs from the global library to a project catalog. When using
a block from the global library, it is automatically copied into the project catalog.

You can also use blocks that have been defined in another project of the same
workspace. As a result, these are created automatically under the project blocks.

For more information, please refer to "Using Blocks, Page 91".

Exporting Blocks

If you would like to use a block, which you have defined in a database under the global
group "CUSTOM" or in a project, also in another database or another program tool,
then you can export this into a text file.

Procedure

1. Click with the right mouse button on the block definition under "CUSTOM" or under
the project.

Issue 4.2.4 93

Manual ibaLogic-V4

2. Select "Export to ST" in the context menu. The "Export" dialog box is displayed.

3. Specify the target folder and file name.

Export

Select the export file for: ibalogicFB
Expoit File | C:\bal ogioFB. ik | .

Generate with pragmas

0K] [Cancel]

Note

If you wish to use the block exported in an ibalLogic-V4 environment, you must export
the block with additional graphical information.

If you would like to use the block in another system, you should export it without
additional graphical information.

Important Note

Since the implementation of the IEC standard is manufacturer-dependent, before you
link the block, you must check in the external system whether it contains deviations or
non-conformances with respect to the IEC standard.

71.5 Importing Blocks
Prerequisite
Q ibaLogic is not running in the online mode.
U You have afile (Block) that can be imported.
Procedure
1. Select the "File — Import — Structured Text" menu.
The "Structured text import" window is displayed.
2. Select the file to be imported in the browser.
3. Finally, confirm with <OK>.
Check box Explanation
Import definition of Organization unit | The selection imports the organization unit as a new block.
as new
94 Issue 4.2.4 i8]

ibaLogic-V4 Manual

7.1.6

Removing Blocks

When you remove a FB from the program, you are deleting only one instance of it.

Procedure
1. Select a FB from the library of your project.

2. Open the context menu.

3. Select <Remove>.

Remark

A dialog box is displayed if you delete the only instance that exists. You can specify in
this dialog box whether you would also like to delete the definition. Finally, confirm with
<OK>. The definition is deleted.

The function or macro block is also removed from the project and is thus no longer
available.

A global block definition in the "CUSTOM" group is not deleted by this method. You can
do this by clicking with the right mouse button on the block in the "CUSTOM" group in
the context menu "Remove" or by pressing the key.

Issue 4.2.4 95

Manual ibaLogic-V4

7.2 Standard Blocks
The Appendix contains a tabular overview of all functions and function blocks that are
available in ibalLogic.
7.3 Complex Function Blocks
7.31 DAT_FILE_WRITE (DFW Function Block)
The function with which you can save existing analog and digital signals at run time in
.dat files is integrated in ibaLogic.
The .dat files have the iba data format and hence, they can be opened, analyzed and
processed further with the iba tools, ibaDatCoordinator and ibaAnalyzer (e. g.
extraction into a database).
DAT_FILE_WRITE_2
igEE‘ETEUES SUM_VALUES_STOR...
;L:'iETE‘MTElME FILE_IS OPFEM
?g_gﬁlr:lg?mﬂme LSt R G
Eﬁ:gﬂ‘g"‘ﬁm LAST_ERROR_STRING
ﬁfTh;—FlLE FILE IS_SIGNED
figure 40: DAT_FILE_WRITE Block
You can save either individual values or arrays of buffered data. Data of type
INTEGER, REAL and BOOL is permitted. Saving additional information, such as
technostring, is supported. Further information, please refer to ,Buffered Mode, Page
192"
Note
Writing to .dat files requires a license. Without a valid dongle,
FILE_IS_SIGNED remains "FALSE" for recording data and hence, the files generated
cannot be evaluated using ibaAnalyzer.
Note
An example of the configuration is given in the Appendix.
7.3.1.1 Function Block Edit DFW
After you have dragged the DFW block and dropped it in the program window, you can
open it by double clicking on it.
The window is divided in the following tabs:
O "Arguments"
Q "Graphical"
96 Issue 4.2.4 i8]

ibaLogic-V4 Manual

The "Graphical" tab contains the sub-tabs:

U "General Configuration”

Q "Signal Configuration"

Edit Function Block

General
D efinition name:

Description: Ecreating and filling of * dat-files

RN A T FILE WRITE |

Murnber of inputs: ' 1 Mumber of outputs:

.ﬂwl Graphical L |

| Comman Configuration | Sigral Canfiguration
| I

Static configuration data
|

figure 41: DAT_FILE_WRITE configurator

"Arguments" tab

The "Arguments” tab displays all inputs, outputs and the associated variables and data
types in a tabular view. This view is also used as an overview and to display the current
values in the online mode. Do not configure any settings in this view, but switch to the
"Graphical" tab. Your attention shall be drawn to any exceptions for individual

properties.

Important Note

When you link an input connector, the default values and those configured in the
function block are overwritten. After terminating the connection, the last value is

retained.

Issue 4.2.4

97

Manual ibaLogic-V4

7.3.1.2

"General Configuration" Sub-tab

Edit Function Block

General
Definition name: |

Fiead write

Description: creating and filing of * datfiles

Instance name: |55

Number of inputs: | Number of outputs: | Mumber of variables:
| Arguments | Graphical

Common Corfiguration | Signal Canfiguration|

' static configuration data

Asynchronous access: O Enabled & Disabled

Flush time (in seconds]: [30.00 c [

Difset Starttime: (in seconds): | oo 4|

Dynamic configuration data

[Store values [store_values) [wite ke [<tare_fle)

[Postprasessing [pp_enab/pp_command [

Sign file (sign_fils)

Add technostiing data (techiho_stingl:

File informatian (file_infa): L |
Drectory: [Endat 13
File name template: [al ogic4_ttt dat]

Sample fime fin seconds) | oosoz|

figure 42: "General Configuration" sub-tab
O Asynchronous access

Disabled:
The data to be saved is buffered internally. Data is written to the hard disk when the

buffer is full. If the file recording is complete, you can analyze the .dat file subsequently
(using ibaAnalyzer).

Enabled:

The internal buffer is written cyclically to the hard disk after the storage cycle time
configured. Hence, you can begin with the analysis while data is still being recorded.
The smaller the value of the storage cycle, the earlier is data available in the
ibaAnalyzer (if you have configured "automatic reload" there). The consequence is
lower degree of compression and higher load on the computer or a network.

Q Start time offset

This time shifts the time axis backwards in time in the .dat files. The time axis in the
.dat file is formed by the starting time point and the sampling time, i. e. by the number
of samples and the time between the individual samples. Thus, the start time in the .dat
file is the "normal start time" — start time offset.

A pre-trigger can be generated in connection with the delay in the data to be saved
(using the DELAY block).

U Recording starts when the trigger is activated. In order to cancel the delay in the
recording, the start time offset must be set to the time delay.

Q Write file (store_file)

98

Issue 4.2.4 @

ibaLogic-V4 Manual

Tip
Do not activate this field in this tab, but do it externally via the STORE_FILE
connector.

Rising edge: The .dat file with the name and path configured in the settings is
created. Recording commences only when STORE_VALUES = TRUE.

Falling edge: The .dat file is closed.

0 Save values (store_values)

When this value is "TRUE" and the file is open, one .dat sample is stored in each
evaluation cycle.

The handling of this parameter depends on the mode of the data:

For values that are not buffered, activate this field and leave the STORE_VALUES
connector unconnected. You can use STORE_FILE to control the recording.

Note

If you control recording of the unbuffered data using STORE_VALUES, you get an
incorrect time axis. Since this is controlled in ibaAnalyzer by the number and time of
the samples, switching STORE_VALUES on and off dynamically does not lead to any
gaps on the time axis, but instead, the samples are arranged serially and gaps occur
at the end of the .dat file.

This variable must be handled differently for buffered values. For more information,
please refer to "Sub-tab "Signal configuration®, Page 102".

Q Post-processing (pp_enab/pp_command)

Post-processing compatible with ibaLogic V3 is available.

iba recommends using ibaDatCoordinator to realize post-processing. It provides
comprehensive functions for further processing, e. g. copying files to a file server,
transfer to the ibaAnalyzer for extraction to a database etc.

O Sign file (sign_file)

The file gets signed when you select "Sign File" in order to be able to use extended
functions in the ibaAnalyzer. Leave this option permanently set. The associated output
is also set as soon the output file gets generated. This is FALSE if the appropriate
dongle is not found.

U Add technostring data (techno_string)

A technostring contains data associated with a measurement, e. g. batch number,
material designations, etc. These can be evaluated specially in the ibaAnalyzer.

The technostring is saved when the file is closed.

O If you would like to use the technostring, link the connector
TECHNO_STRING with a variable of type string e. g. the data received by a TCP/IP
module.

Issue 4.2.4 99

Manual ibaLogic-V4

U File information (file_info)

This is extra ASCII information that is saved when the file is closed. This information is
available under "Info" when you conduct an analysis.

iba recommends that you use the FILE_INFO input connector in order to be able to
modify the contents dynamically.

The info fields in the analyzer are structured as follows:
Field name: Text

If no ":" is found in the text, ibalLogic sets "UserField0" as the default value.
Multiple info fields are separated by ";".

Note

Standard info field names cannot be overwritten. Entries with this name are ignored.

Standard info field names:

= o info
D starttime: 19.07.2010 10:57:50.352
[) ck:0.05
[) DongleNr: 1787878
D RegisteredCustomer: Testsystem IPVY
[) Module_name_0: module_01
[[) ibaFiles: 409
) typ: real
[) frames: 0000000024
+ B8 0. module_01

figure 43: Standard info field names

U Folder (Part of file_name):

o Select the drive and path by clicking on the browser button <E] > the drive and
path where the .dat files should be saved.

Important Note

You cannot work with the Windows file browser if the Runtime system is located on the
PADU-S-IT platform. Specify the path and file name in the preset to the FILE_NAME
connector in the "Arguments" tab or link the connector with a string variable in which
you can set the path and file name dynamically. The input gets accepted when the file
(STORE_FILE) is opened.

The default "C:\dat" should be used as directory. The data can then be fetched with
the ibaDatCoordinator. In the ibaDatCoordinator, it can then be accessed with "\S-IT-
16-000074\RamDisk\dat", for example. Here, "S-IT-16-000074" is either the host name
or the IP address of the PADU-S-IT addressed, "RamDisk" is the internal release
name and "dat" the specified directory name.

100

Issue 4.2.4 m

ibaLogic-V4 Manual

Q Draft file name (Part of file_name):

Specification of the file name and the index. The index is incremented for each new
.dat file if the path and file name specified is not modified.

The "#" character is used as a placeholder for the index. Specify multiple placeholders
for multi-digit indices.

##: 0...9 > 10files
##: 00 ... 99 — 100 files

If the path is not modified, after the index values overflows, the oldest .dat files are
overwritten.

@ Sampling time (in seconds) (sample_time)

This value is the time base for the .dat file. It defines the time in seconds between
two values of a measurement signal that are saved.

In case of unbuffered values, specify the task interval for the program that contains the
DFW block.

You need to enter the time period corresponding to the depth of the data array for
buffered values.
For more information, please refer to "Sub-tab "Signal configuration®, Page 102".

Important Note

The preparation of the signals to be measured and the DFW block must run in the
same task interval. If this is not the case, the time axis in the .dat file is either stretched
or compressed.

Example of sampling time

If the task in which you provide the data runs in an interval of 10 ms, you must set the
sampling time in the DFW block to 0.01 sec.

If you want the values to be saved only every 50 ms, it is not sufficient only to set the
sampling time to 0.05 sec. (in this case, the same data gets saved, but the X-axis
contains a time period that is 5 times longer), but instead, you must specify a clock
cycle at the STORE_VALUES connector that becomes "TRUE" only at every 5th cycle.

However, it is simpler to allow the block to run in a 50 ms task, and to let the
STORE_VALUES connector remain static with "TRUE".

Tip
Despite correct settings of the parameters, if you see a time axis in the analysis that is
too long or too short, please check whether the real task interval time (Block

EVALTIMES) matches the one configured. For small cycle times it is recommended to
activate the turbo mode in order to keep the task interval constant.

Issue 4.2.4 101

Manual ibaLogic-V4

7.3.1.3 Sub-tab "Signal configuration"

Edit Function Block

General
Definition name: |DAT_F | Read write e

Description: | ereating and filing of * dat-fles |

Instance name: | DAT_FILE_WRITE_1 |

Number of inputs: [0 2] Wumber of outputs: | Muwberof varisbles: [
| Arguments | Graphical
 Cammon Canfiguration | Signal ED"'“Q“'E“DI’!

| Module definition

‘ Harme Made wshies |Dgtsls | Datatyps Analogs | |

]
i)
\II

B) Buffered) Unbuffered]

Record Dof 0 & = = « X

Signal definition |

|| Hame Information Type 4 |

figure 44: Sub-tab "Signal configuration”
The "Signal Configuration" sub-tab contains the areas:

QO Module definition:
defines the module name, module type, the number of signals and their data type

Q Signal definition:
defines the signal name and the signal description

O Important Note
In the present version of ibaLogic, you need to configure the modules and signals in
the DFW block completely before connecting a measurement signal.

Reason: ibalLogic creates internal structure and array data types that cannot be
modified once they have been used. If you modify the signal configuration
subsequently, you must either remove all joiners that have been inserted automatically
and rewire hem or adapt all corresponding data types in the ST blocks.

In order to create a new module, an entry is provided at the end of the module list that
contains a blank name field. Simply enter the module name here and configure this
module. After quitting, a new entry is again generated automatically at the end of the
list.

In principle, you can create as many modules as you please. Furthermore, the
maximum number depends on your license.

102 Issue 4.2.4 @

ibaLogic-V4

Manual

Description of the modules:

Q

Q

Q
Q

Name:
Module name that must conform to the IEC standard.

Unbuffered mode:
Recording of individual values. One data sample is saved in each cycle. The value
in the "Values" column is not considered.

Buffered mode:

Recording packets. An array of data samples is saved in each cycle. The value in
the "Values" column specifies the array depth, i. e. the number of samples.

For further information, please see "Buffered Mode, Page 192".

Values:
Meaningless in the "Unbuffered" mode.
Number of samples saved per cycle in the "Buffered" mode.

Digital values:
Number of binary signals in this module (max. 32)

Data type of the analog values, REAL and INTEGER are permissible

Analog values:
Number of analog values in this module (max. 32)

All signals pertaining to the module marked are displayed below the signal definition.
The signals are created with the default names (Digital_nn and Analog_nn). You can
edit the signal names and enter a description for each signal under "Information".

Note

You cannot modify the signal configuration as long as the "DATA" connector is
connected with data. You have to break the connection if you wish to make any
modifications. In the process, any joiners that have been generated automatically are
removed.

Toolbar for editing the module definition record:

Record 1of 1 & == « X

Symbol Name/Tooltip Explanation

g Append Adds a new blank module definition record.

- Delete Removes the module definition record selected.

o Edit Releases the module definition record for editing.

o End Edit The data of the modified module definition record is
accepted.

Cancel Edit The data of the modified module definition record is not

x accepted. The input is canceled.

Number of records
Recard 1 of 1

For more information, please see “Practice Examples, Page 248°".

O

Issue 4.2.4 103

Manual ibaLogic-V4

7.3.1.4 Generate Storage Structure

The simplest case of storing the .dat files generated is to specify a fixed folder and a
fixed base name for the files, with ibaLogic assigning a serial number to the base name
automatically.

If you need a storage structure with sub-folders and file names, which, for example,
should contain the current batch number, this needs to be programmed.

Example

A new file should be created every hour. The file name should contain the hour value in
the form of a name.

Implementation

The file name is formed using the current hour value. A low pulse is fed to the
STORE_FILE input of the DFW when the value changes (change of hour) using the
DELAY and EQ blocks. In this manner, the upcoming name is accepted for the next
.dat file.

The file name is formed with the CONCAT blocks. The path name and base file name
are available at the first CONCAT. The hour is appended to this and with the 2nd
CONCAT the .dat extension is appended. Thus, the file name c:\iba11.dat is generated
here.

SYSTEM_UTC_TIME [FH2SG .

figure 45: Example: CONCAT blocks

You can also compose a unique .dat file name including the path in exactly the same
way. If you specify a new path, ibaLogic creates it automatically.

104

Issue 4.2.4 @

ibaLogic-V4

Manual

7.3.2 TCPIP_SENDRECV

This block enables transmission and reception of data via TCP/IP.

The data here is raw data that is sent via TCP/IP. In this manner, all native TCP/IP

protocols can be re-created.

figure 46:

TCFIF_SENDRECV. 1
DATA
RECV_DATA
GTH
v EAR. RECEIVED
REM_ST_ADR
FORT_NUMEER RECVD_LENGTH

TERMINATE STRING
FLUSH_AFTER_READ SEND_BUFFER_FILL..
BYTESWAR

ACTIVE GONNECTED
HIGH_PRIC

iEin A, LAST ERRCR_CODE
RECW_LENGTH

USE_RECV_LENGTH

REsET LAST ERmoR AST.ERROR STRING

TCPIP_SENDRECYV Function block

Note

This block requires a license.

Important Note

You can configure the maximum number of parallel connections permissible in
Windows XP. The value depends on the Windows configuration. You can adjust this

value with the help of an entry in the Windows registry database.

For more information, please see "Number of TCP/IP connections possible, Page
318"

Issue 4.2.4

105

Manual ibaLogic-V4

7.3.21

Inputs

Connector
SEND_DATA

Data type
Any

Explanation

Data to be transmitted The data type is ANY, i.e. it aligns
itself with the interface data type, e. g. a structure, string,
array.

SEND

Bool

When it is "TRUE", data available at SEND_DATA is
transmitted. This input is not edge-oriented, i. e. a fixed
"TRUE" at the input initiates transmission in every cycle.

SEND_LENGTH

Udint

Length of the data to be transmitted in bytes. If the value is
0, all data available is transmitted

NEW_PARA

Bool

Accept new link parameters.

REM_ST_ADR

String

IP of the link partner. This IP is required only for active link
establishment, i. e. when the input ACTIVE = TRUE. If
ACTIVE = FALSE, the block waits for the partner, which
must specify the IP address of the PC or the PADU-S-IT.
You can also enter the computer name instead of the IP
address. Resolving the name may take some time during
creation depending on the configuration of the Operating
System.

PORT_NUMBER

Udint

When ACTIVE = TRUE: Port number of the partners.
When ACTIVE = FALSE: Own port number

TERMINATE_STRING

Udint

Strings are terminated with a NULL byte.
This input is evaluated only when strings are available at the
SEND_DATA input.

FLUSH_AFTER_READ

Bool

Deletes the receive buffer after reading the data.

BYTESWAP

Int

= 1: Swap based on data type (AB CDEF - BA FEDC)
= 2: Swap 2 Bytes respectively (ABCD - BADC)
= 4: Swap 4 Bytes respectively (ABCD - DCBA)

ACTIVE

Bool

TRUE: (ibaLogic is the TCP/IP client)

The block attempts to establish a link to the IP and the
PORT, which are specified in REM_ST_ADR and
PORT_NUMBER respectively.

FALSE: (ibalLogic is the TCP/IP server)
It waits for incoming connections at the port number
configured. The IP address is not evaluated.

HIGH_PRIO

Bool

The data is fetched with a higher priority from the Windows
network buffer and written in the input buffer.

NOTE
By default, this function should be set to "FALSE".

RECV_OK

Bool

TRUE: Data received is OK, and the input buffer can be filled
with the new data.

FALSE: The data last received remains until the input is
triggered again.

RECV_LENGTH

Udint

Defines the telegram length in bytes. This input is evaluated
only if the input, USE_RECV_LENGTH = TRUE

USE_RECV_LENGTH

Bool

TRUE: If the input buffer is larger than the RECV_LENGTH
configured, there is only one telegram with the length
configured at the output, RECV_DATA.

FALSE: At the output, RECV_DATA, there is one telegram
with the maximum size of the data type available at the
output, RECV_DATA.

RESET_LAST_ERROR

Bool

Resets the error outputs

106

Issue 4.2.4 m

ibaLogic-V4 Manual

7.3.2.2 Outputs

7.3.3

Connector Data type Explanation
RECV_DATA Any Received data. The data type aligns itself with the
interface data type, e. g. a structure, string, array.
RECEIVED Bool This output is TRUE as soon as any data is received
RECVD_LENGTH Udint Length of the data received in bytes.
SEND_BUFFER_FILLED Bool TRUE when the internal transmit buffer is full. i. e. the
block cannot transmit data fast enough
LAST_ERROR_CODE Dword Last error message as a DWORD in hex format
LAST_ERROR_STRING String Last error message as clear text

Example of a Send - Receive procedure

SWITCH_1 SwITCH 2
FALSE | VAL Oﬁom- 4 FALSE FALSE | VAL mclﬂ | FALEE MLSE §[7 SEND

Address | 11921, s==152.1._{ TREM_ST_ADR SwiTcH_3

FALSE | VAL Mom | FALSE ALSE ([T NEW_PARA

Address_Name| o

FB_RECEIVED_DATA_1
DATA . 'Coil.
RECY_DATA [E{ Coilll_ s CoillL... 47 it EnorCode 1600,
ErorSting |“<amp.

TCPIF_SENDRECV_1
Coill. \TA
SEND [| FALSE o
NEW_PARA[T |FALSE
= T
REM_ST_ADRIT [182.1. e

B[26120 gl

REGEIVED | FALSE
RECVD_LENGTH | 504

FLUSH_AFTER READ SEND_BUFFER_FILL... | FALSE
BYTESWAP

TRUE | ACTIVE CONNECTED | TRUE
FALSE | HIGH_FRIO
TRUE | RECV.OK

5
FALSE

LAST_ERROR_CODE _|16=00

FALSE| USE_RECV_LENGTH

Tiis| RESEr LAST PRoR LASLERRORSIRING | <cmo.

figure 47: Example of a Send - Receive procedure

In this example, the data to be transmitted is available in the form of a structure. The
data is transmitted with the help of a manual trigger.

There is a switch at NEW_PARA, in order to re-establish the link for test purposes or in
case of maodification in the link parameters, if required.

This block is passive and waits until a link has been established by the communication
partner.

The data received arrive at RECV_DATA. The input RECV_OK is set permanently to
"TRUE", since the data does not have to be buffered intermediately, as they can be
well processed within the task cycle time configured.

PIDT1_CONTROL

Universal PIDT1 controller that can be switched to operating modes as a P, |, Pl or
PIDT1 controller.

Q Set the starting value of the integrator

Q Hold the instantaneous value of the integrator
O Pre-control value WP

Q Controller limits LL and LU

Q

Proportional coefficient KP

Issue 4.2.4 107

Manual

ibaLogic-V4

0O 00 00

Reset time TN

Control direction reversible

Indication when the limits configured are reached
Display of the error signal

Display of separate P, | and DT1 controller outputs

PIDTI_CONTROL_1
W

" ¥
WF

LL YE
LU
=
HF
™
K ¥l
Ti
ENAB
INV
EN_F
EN_I QL
SET

HI ou
EN_D

YP

figure 48: PIDT1_CONTROL Function block

P-Controller
0 o |y
o RS
= KPp —| Limter
[TRRTT]
X
ENAB ENAB
EN_P
|-Controller
10 =
; S u
KP -] .
™ Limiter
SET ‘-.-;!-r:;c\ 0 e OL
sV H OR
INV HI ENAB —p 2 "'." fun(;tioﬂ
bath
EN_| = limiers
DT1-Controller ;.Ar«lf;:g

Y

KV
T1

WP

figure 49: Block diagram of a universal PIDT1 controller

108

Issue 4.2.4

ibaLogic-V4 Manual
7.3.3.1 Inputs
Connector Data Type Explanation
w Lreal Set-point value
X Lreal Actual value
WP Lreal Pre-control value
LL Lreal Lower limit value (valid for Y and Y1)
LU Lreal Upper limit value (valid for Y and Y1)
SV Lreal Set value for the integrator is accepted with SET
KP Lreal P gain
TN Time Reset time
KV Lreal D gain
T1 Time D time constant
ENAB Bool Controller release
INV Bool Invert the sign of the control deviation
EN_P Bool Activate the P controller
EN_| Bool Activate the | controller
SET Bool Set the integrator with the value SV
HI Bool Stop the integrator
EN_D Bool Activate the D controller
7.3.3.2 Outputs
Connector Data type Explanation
Y Lreal Control value = YP+YI+YD+WP
YE Lreal Control deviation = W-X
YP Lreal Output value of P controller = KP*YE
YI Lreal Output value of | controller = YI,,+KP*YE*Ta/TN
YD Lreal Output value of D controller = a*YD,,+ a*KV*AYE
a=1/(1+Ta/T1)
AYE = (YE-YE..)
QL Bool Lower limit value reached
Qu Bool Upper limit value reached

Issue 4.2.4

109

Manual ibaLogic-V4

7.3.3.3 Details / Signal trends
The various signal trends of the individual
controller components are illustrated in the following diagrams.

Control value Y:

The control value Y is the sum of the P, | and D components and the pre-control
value WP.

If the input, ENAB (controller release) is not set, the control value is always 0.0.

Input WP, pre-control value:
This input is added to the output Y.

Input LL/LU, lower / upper limit value:

Note

The total output Y, as well as Yl are limited.

The outputs, QL and QU, accordingly take up the value TRUE.

The following controllers are used in practice:

Pl controller PD controller PID controller

The P, | and DT1 components are given special consideration
in the following.

110 Issue 4.2.4 m

ibaLogic-V4 Manual

7.3.3.4 P component: (Parameter: KP, EN_P)

The P component of the controller is calculated as KP*YE. The value is fed to the
output value only when EN_P is set.

figure 50: P component

PROG_PID_VARISNTEN PIDT1 _CONTROL _1-W (20} T . . | | F45

it PROG_PID_VARIANTEN PIDT1_CONTROL_1.Y (40)

e
S B L
=Ry

" ‘ : i i f T T T T rao
T PROG_PID_VARIANTEN PIDT1_CONTROL_1 .YP (40) 1 t . F45
PROG_PID_VARIANTENPIDT1_CONTROL_1.YE (20) \ 1 1 40

k20

| | | Lis

| | | Lin
1 s
0

1010160 1810470 1810180 1010190 1010:200 1015210 1010220 104G:23.0

figure 51: P component

@ Issue 4.2.4 11

Manual ibaLogic-V4

7.3.3.5 | component: (Parameters KP, TN, SET, SV, Hl and EN_]I)
The I component of the controller is calculated as Yl,:=YI,
.+ KP *YE * Ta/TN (Ta = Task time).
This component can be set to the value of the input SET with the input SV. A value of
"TRUE" at the HI input stops the integrator. The value is fed to the output value only
when EN_| is set.
Correlations
TN = KP*Ta = KP/KI
Example 1
KP=1.0
TN=1s
 swioHn
) QM e s s s
figure 52: | component
@ v S °
x T [25
T oRoe-PoVARANTEN P! CONTROL Y (0.5 _ I I B
= L L L ! L ! ! | | | :-21:
T ERoe o amanren pom Conroc 3 ve (6 ' T] >
— | \ i —
1050470 1050480 1050490 1050500 105051 0 1ns0520 1050530 105054 0 1050550 105056 0 i
figure 53: | component
112

Issue 4.2.4 @

ibaLogic-V4 Manual

7.3.3.6 DT1 component: (Parameters KV,T1 and EN_D)
The DT1 component of the controller is obtained as YD: = a*YD,.,+ a*KV*AYE
a =1/ (1+Ta/T1) AYE = (YE-YE..). (Ta = Task time)

The value is fed to the output value only when EN_D is set.

Example 1
KV =0.5

T1=1s

TG
IN

[00} ino {00 |
00
Nlﬂ

=44
-

BFIFLEFEXE

g_nnn
=
H
BT E

ARRAARA L

zpn

figure 54: DT1 component

Trend graph 4 X
Pl @i ° 2
o T ; ¥ ; T i : : T Fan
-] FROG_PID_VARIANTEN PDT1_CONTROL_2 W (20) _
- FROG_PID_YARIANTEN PIDT1_CONTROL_2Y (2,681066) Lz
Ho
ks
a0
L5
A0
-] PROG_PID_VARIANTEN PDT1_CONTROL_2 YE (20)
FROG_PID_ ARIANTEN PDT!_CONTROL_2.¥D (2,661 066) g
k1o
s
a0
L5
10
1456520 14:56:53 5 14:56:55.0 14:58:56 5 14:5650.0 14:56:50 5 14:58:010

figure 55: DT1 component

@ Issue 4.2.4 13

Manual

ibaLogic-V4

Example 2
KV =1
T1=2s

ibaPDA Express 1 2.0 [localhost]

LP Bl idi]

Pl @i o 2
x]

1 PROG_PID_Y ARIANTEN PIDT1 _CONTROL _2 W (20)
PROG_PID_Y ARIANTEN PIDT1_CONTROL _2Y (10,01753)

1 PROG_PID_Y ARIANTEN PIDT1 _COMTROL_2 YE (20)
PROG_PID_Y ARIANTEN PIDT1_CONTROL_2.¥D (10,01759)

1457570 14:57:56.5 14:58:00.0 14:5501.5 14:58:03.0

14:58:04 5

14:56:06.0

figure 56: DT1 component

114

Issue 4.2.4

ibaLogic-V4 Manual

7.3.3.7 PIDT1 component — Total response

Example 1
Example of the complete PIDT1 controller with signal trends.

. swmeHz
J RTRIGR
E."_I-E FALSESTOLK QT FALSE s
FmiG3
| FALSE jI7CLC Q) FALSE |

G
| FALSE ICLK @[} FALSE §

W
x
WP
L
w

TgEEzudzaae
E'vz'ﬁ

f 00§
| 00 |
[oo]
| 1000 |
[oo]
| o5 |
| w15 |
[1o]
| =1 |
| FALSE |
FALSE
| FALSE |

=

figure 57: PIDT1 controller with signal trends

ibaPDA Express 1.5.12.0 [localhost]

sToP) Patlid [

i T PROG_PID_VARISNTEN PIDT1_CONTROL _4 W (10)
L PROG_PID_VARIANTENPIDT1_CONTROL_4.¥ (13,92028)

— PROG_PID_YARIANTEN PIDT1_CONTROL_4.¥E (10

— PROG_PID_VARIANTENPIDTI_CONTROL 4 YP ().

il ttlh G388t

- — PROG_PID_YARISNTEN PIDT1_CONTROL 4 1 (5 505)

=l
= PROG_PID_VARISNTEN PIDTA_CONTROL 4 VD (3,255746) /\

1 1133 M M3 10 LI NI/ I0EIT 103040 11IEA1 103542 113943 113544 103345 1130946

figure 58: PIDT1 controller with signal trends

@ Issue 4.2.4 115

Manual

ibaLogic-V4

7.3.4

RAMP

Ramp block with 2 different ramps: Manual and automatic mode
U Set-point value limit

O Start up the new set-point value via the ramp

U Set the set-point value

O Indication when the limit values are exceeded

RAMF_1
x
LL
LU
LAY,
RM
RA
€D
cu
CF
SET

Y
UR

QE

figure 59: RAMP Function block

116

Issue 4.2.4

ibaLogic-V4

Manual

7.3.41

7.3.4.2 Outputs

Inputs

Connector Data Type Meaning/Usage

X Lreal Input value (Set-point)

LL Lreal Lower limit value

LU Lreal Upper limit value

SV Lreal Set value, output is set to this value with SET
RM Lreal Manual ramp (1/s), valid for CD and CU

RA Lreal Automatic ramp (1/s), valid for CF

CcD Bool Ramp falling (manual ramp control)

Cu Bool Ramp rising (manual ramp control)

CF Bool Ramp as per the input value (automatic ramp control), has

precedence over CD and CU

SET Bool Set output value to SV

Connector Data Type Meaning/Usage

Y Lreal Output value; Y,= Y., + UR

r =ramp used

UR Lreal Ramp used (1/s)

QE Bool Output value = Input value

QL Bool Lower limit value reached

QU Bool Upper limit value reached

Issue 4.2.4 117

Manual ibaLogic-V4

7.3.4.3 Example

The inputs CD, CU and CF control the ramps. If none of the inputs is active, the last
output value is fixed. The output UR then displays the ramp used as the value O.

If the input CD is active, regardless of the input value, the current output value at the
manual ramp is scaled down to a maximum of the lower limit.

If the input CU is active, regardless of the input value, the current output value is raised
via the manual ramp up to a maximum of the upper limit.

If both CD and CU are active simultaneously, UR is set to 0. The output value does not

SLIDER 1 RAMP_1

00 | Low J OUT[447.75... EEE 479, Jax. o —
100.0 | HiGH 10UT | 478 000 | L AR

300 | L
55.0 oy HE e

SWITCH_6 100.0 | RM
%0 | FA LA

FALSE |~ VAL OUTE) TRUE TRUE fi=CD
QL |False

FALSE g CF
FALGE | CER ks

SWITCH_T
FALSE | VAL momi FALSE
SWITCH_8

FALSE VAL WOUT-_I FALSE

figure 60: Controlling ramps

% ibaPDA Express 1.5.12.0 [localhost]

F e ; " AL H
Signal-Anzeige »
Pl @ilvt.° 2 F-
=l ! 300
—[PROG_PID_WARIANTEN RAMP_1 X (1007 H
PROG_PID % ARIANMTEM RAMP_1 v (-10,1) i
: 200
i
1
: 00
/ :
'
- I
| 0
1
1
1
1
. F-100
i
'
i -200
i
1
1
i --300
i
1
i L-400
e I
PROG_PID_SARIAMTEM RAMP_1.C0 (00 H
-E PROG_PID S ARIAMTEM RAMP_1.CU (1) i
PROG_PID_YARIAMTEMN RAMP 1 .CF (0] 11| E—1 — [
| ——
i
T T T T T T T I T
121755 121800 121805 121810 121815 12:18:20 121825 121830

figure 61: Controlling ramps

118 Issue 4.2.4 @

ibaLogic-V4 Manual

If the input CF is active, the output value tracks the input value via the automatic ramp.

If the input value exceeds the limit, the output value changes in line with the ramp only
up to the limits.

figure 62: Controlling ramps

a ' : ' - S i ! EL
T PROG_PID_YARIMNTEN RAMP_1 % (78,5) '
PROG_PID_VARIANTEN RAMP_1 ¥ (78,5) =
k200
- - k150
- N'\ - 100
0
] 0
=l i , | 1
PROG_PID_VARIANTEN RAMP_1 CD (0) |
FROG_PID_ ARIANTEN.RAMF_1.CU (0] i
PROG_PID_YARIAHMTEN.RAMP_1.CF (1) |

122305 122310 122315 12:2320

122245 122250 12:22:55 122300

figure 63: Controlling ramps

If CF is set, the inputs CD and CU do not have any effect.

@ Issue 4.2.4

119

Manual ibaLogic-V4

7.3.5

FUZZY_CONTROLLER

Fuzzy logic is a theory that, above all, has been developed for modeling uncertainties
and fuzziness of colloquial descriptions. For example, you can use it to capture the

fuzziness of specifications such as "a little", "quite" or "considerable" mathematically in
models.

Fuzzy logic is beneficial particularly when a precise logical or mathematical description
for a process is not available, cannot be created or the correlations are too complex,
but, for example, intuitive know-how of an operator is available.

Fuzzy logic is based on fuzzy quantities and so-called associative functions, which map
objects to fuzzy quantities and to compatible logical operations on these quantities and
their inference. Moreover, in the case of technical applications, methods must be
considered for the conversion of specifications and correlations in fuzzy logic.
FUZZY_CONTROLLER_1
EMABLE

LOAD_FILE
FILEFATH

ouT

IND TERM_ARRAY
N
N2 TERM_STRING
IN3
IN4 ERRORCODE

ING
ING

NT ERROR_ETRI...

figure 64: FUZZY_CONTROLLER Function block

ibaLogic provides the FUZZY_CONTROLLER function block
for control using fuzzy logic.

Principle of Operation

The fuzzy controller obtains an output value based on a set of parameters that it takes
from a parameter file related to the application. With the commencement of the
evaluation with connector ENABLE = TRUE, the parameters from the file whose path
specified to the connector via FILEPATH, and evaluation is done in the same
evaluation in ibaLogic for obtaining the output value with the new data loaded.

The parameter file can be reloaded via the LOAD_FILE control signal even during the
current evaluation, without interrupting the output value evaluation or data acquisition in
ibaLogic. The output value can be derived from up to 8 input values INO ... IN7, and is
used as a set-point value at the OUT connector or as a control variable of a process.

120

Issue 4.2.4 m

ibaLogic-V4 Manual
7.3.5.1 Inputs

Connector Data Type Explanation

ENABLE Bool Start the evaluation procedure when the input is
"TRUE". Data from the parameter file is accepted
with the rising edge.

LOAD_FILE Bool Accept the data in the parameter file with the
rising edge of the signal during the evaluation
time.

FILEPATH String Path specification for the data of the parameter
file

INO..IN7 Lreal Input data, on the basis of which the output value
is evaluated.

7.3.5.2 Outputs

Connector Data Explanation

type

ouT Lreal Output value of the fuzzy controller; the output = 0,0 in

case of an error or if enable = "FALSE"

TERM_ARRAY Lreal Level of association pu(x) of the individual linguistic

(0..8) terms from which the output value is formed
TERM_STRING String Specification of the current linguistic terms from which
the output value and the percentage of the level of
association are formed.
ERROR_CODE Int Output of the error code
ERROR_STRING | String Text output of a brief error message.

Issue 4.2.4 121

Manual ibaLogic-V4

Handling

Configuring and customizing is performed using the "ParamFuzzyTool.exe" application.
You can get this upon request from the iba Support and contact, Page 330.

The function block of the fuzzy controller is located under "Function blocks -
SPECIALS".

The path of the parameter file is provided as a string to the FILEPATH connector. With
the rising edge of the Boolean signal at the ENABLE connector, data from the
parameter file is accepted and the evaluation of the output value commences promptly.
As long as the Enable signal is "TRUE", the output value is evaluated using the LREAL
values available at the connectors INO ... IN7. The default value of the ENABLE
connector can be defined with "TRUE". This results in permanent evaluation of the
output value.

The connector of the LOAD_FILE Boolean signal at the function block of the fuzzy
controller offers the option of loading a new parameter file while an evaluation is being
performed. The rising edge of the LOAD_FILE signal causes the data in the fuzzy block
to be accepted as the new set of parameters to form the basis of the output value
evaluation.

122

Issue 4.2.4 m

ibaLogic-V4 Manual

7.4 User-specific Function Blocks

ibaLogic has a library of pre-defined function blocks. Nonetheless, it may be necessary
to define your own function blocks for a more efficient solution to your problem. There
are three types of user-specific function blocks:

Q Function blocks that are created in ibaLogic using the high-level programming
language, Structured Text (ST).

U Itis also possible to combine existing graphics programming to macros.

Q Function blocks that are created external to ibaLogic in a high-level language (C++,
others on request e.g.: FORTRAN) and are integrated as DLL into ibalLogic.

After they are created, all these function blocks are treated like standard function

blocks.

7.41 Function Blocks
In order to create a new function block, position the mouse pointer to a free location in
the program window and select "New - New Function Block..." in the context menu. The
"Create Function Block" dialog box is displayed.

The fields for the name and the table for defining the inputs, outputs and internal
variables are located at the top of the box.
Create Function Block g@

=
g< Variables

wariable type
| | index Data type Name Default Description |
(=] |

|| =l ariable type: Outpt
1/ INT ol o

(=
IIINT il 1)
=

Check ST | [Disable Intelizense

figure 65: "Create Function Block" dialog box

i85 Issue 4.2.4 123

Manual ibaLogic-V4

7.41.1 General Settings
Definition name
The definition name is the name with which the block is saved in the block folder. The
instance name is formed from this name by appending an index.
Note on difference between Definition - Instance
For more information, please see "Instances, Page 58".
Note
iba recommends that you use different prefixes for function blocks and macros, e.g.
"FB_" and "MB_". You can configure the settings under the "Tools — Options —
Function Blocks" menu.

Similarly, you can also find the default values for the names and data types of the
variables, and iba recommends using the names "i", "o", "i0" and "v". You can
configure data types based on your requirements.
Instance name
The instance name is not displayed during creation. It is displayed only when you
retrieve a block to use it in a project.
Description
You can describe the block function in more detail in this field. This description is
displayed as a tooltip when you move the mouse pointer over the function block name
in the library.
Number of Inputs / Outputs / Variables
You specify the number of variables used here. One line is created in the table for each
variable.

124 Issue 4.2.4 i8]

ibaLogic-V4 Manual

Variables
The list of variables is available either as a tree or as a table for display.

Create Function Block

General
Definition rme: (ol ogicFB

=

D escription:

[172] Mumberofoupus 1 2] Mumberofvaicbles: 0 %

MNumber of inputs,

@ War S
ey 000000]
&
5 R -
T =03 Dupts
. [o1:INT
3 InOut variables
[Variables Daka type Mame Default Description
1T Jit la
auk B
1/ INT o1 o

Check 5T | [Disable Intelisense

figure 66: "Create Function Block" dialog box with the list of variables
2 You can open the tree by clicking on the "Variables" tab to the left of the table.

This view is hidden since you can configure and customize the variables only in the
variables table.

Mumber of inputs: I4 = | MNumber of outputs: |1 = | Humber of variables: |0 % |
| Arguments |
&
&
2
Variable type
Index Diata type Name Default Description Value
B
1 REAL i1 0.0 0.0
2 REAL iz |00 | 0.0
. il dl :
3 REAL i3 0.0 0.0
4 REAL i 0.0 |00
I=! Variable bype: Output
1 REAL o1 0.0 0.0

figure 67: Function block variables

m Issue 4.2.4 125

Manual ibaLogic-V4

Variable

Column Explanation

Index Each variable type begins with index 1.

Data Type Selection box for accepting a defined variable type. You can also create
new user types here. You can find the default value under the "Tools
Options" menu.

Name Default value consists of prefix and index. You can, however, also edit a
new name.

Default Please note that the notation of the values depends on the data type.

value For more information, please refer to "Syntax Description of
Structured Text, Page 128". The value is assigned to the variable
provided that no link is connected (for input variables) or there is no
assignment within the block code.

Description | Text field that is displayed as a tooltip in the block folder.

Value In the case of arrays and structures, the current values of the variables

displays only the first element (only in the online mode).

This value can be modified manually, but it is re-

evaluated in the next cycle and hence, if required,
overwritten.

Important Note

If you remove a link to the input connector in the online
mode, the last value remains.

Using the buttons on the right, you can change the sequence of the variables, add and
delete new variables at the position marked.

Icon Explanation

Add an element.

Delete an element.

Interchange the elements.

126

Issue 4.2.4 m

ibaLogic-V4

Manual

74.2 Structured Text Editor
You can define the functionality of a function block using the Structured Text Editor.
Fdit Function Block OE=E
g s] resgunte @

D escription: |

Instance name: RG]

MNumber of inputs,

Ha Arguments

[£ %] Humbercfoupus: [1 2] Murberol varistles: 0 3|

Variables

Wariable type

Index Data bype
= _
1/BO0L
2|REAL
3 REAL
| 4 REAL
| = variable type: Oukput i
‘ | IIREAL

i)
|
|
|

Mame Default Description

FALSE
0.0

0.0

QB[R

0.0

0.0

Structured Text

if i1 then

ol:= i4 + i3;
else

ol:= i3 + i2;
end_if;

Atk e e

Check 5T Disable Intelisense

figure 68: Structured Text Editor

The following buttons are located above and below the text input field:

button

Set a breakpoint
(active only in the online
mode)

Explanation

By clicking on this button, program code execution stops at the insert text
position of the mouse cursor.

Delete breakpoint
(active only in the online
mode)

It is used to remove the breakpoints at the insert text position of the
mouse cursor.

Continue
(active only in the online
mode)

Program execution is continued. Program execution is stopped again at
the breakpoint in the next cycle.

Check ST

Syntax test of the code entered, without compiling it

Enable / Disable Intellisense

Enable or disable the Intellisense resource

A DANGER

Danger by using functions in the online mode!

We dissuade you strongly from using these functions (Set breakpoint, delete
breakpoint, continue), if you are using outputs for control and regulation functions in
ibaLogic in the online mode, since there is a risk of personal injury and damage to
property that could result by doing so (see "Time behavior, Page 230").

@ Issue 4.2.4 127

Manual ibaLogic-V4

7.4.21 IntelliSense
IntelliSense is a resource for completing entries automatically. It provides additional
information and selection options to the programmer to facilitate the completion of data
entry.
During the creation of blocks, also new variables are automatically added to
IntelliSense.
In particular, it simplifies working with structures considerably, since with structure
variables, after entering the "." separator, all elements defined are provided
immediately for selection.
figure 69: Structured Text editor with IntelliSense enabled
Example: The IntelliSense selection window appears by entering "IF". You can enter
the choice highlighted with <Return>.
Statements such as IF. THEN..ELSE / WHILE.../ REPEAT... are provided only after
you enter the first word, and can, hence, be taken over completely at this stage as a
framework.
You can make the selection using <Cursor up> or <Cursor down>, and accept the entry
with <Tab>.
7.4.2.2 Syntax Description of Structured Text

For example, Structured text can look like the following:

1 (* Difference between i2 and i1 *)

2 Difference := 12 - 1i1;

3

4 (* Mean value calculation *)

5 Mean value := (il + i2) / 2.0;
figure 70: Syntax of Structured Text
Notations:
Q Comments are enclosed in "(*" and "*)".
Q Statements must be terminated with a semicolon.
O The value of the result must be written on the left of ":=".
U Expressions consist of operators and operands.
Important Note
Apart from the operators and statements described in the following, you can also call
up some functions that are available graphically as a block, even from within the ST.
You will find notes on whether and how these can be in the ST in the description of the
functions in the section "Standard Function Blocks, Page 280". There, for each block
with the keyword "ST": a note has been provided regarding its usability in ST.

128 Issue 4.2.4 i8]

ibaLogic-V4

Manual

7.4.2.3 Operators

List of the operators sorted by precedence:

Operator Example Value in the Description Priority
example
0 (2+3) * (4+5) 45 Brackets Highest
** 3**4 81 Exponentiation
- -10 -10 Negation
NOT NOT TRUE Logical negation
* 10**3 30 Multiplication
/ 6/2 3 Division
MOD 17 MOD 10 7 Modulus (Division
remainder)
+ 2+3 5 Addition
- 4-2 2 Subtraction
<, >, <=, >= 4 > 12 FALSE Comparison
= T#26h = T#1d2h |TRUE Equality
<> 8 <> 16 TRUE Inequality
&, AND TRUE & FALSE FALSE Boolean AND
XOR TRUE XOR FALSE |TRUE Boolean Exclusive
Or
OR TRUE OR FALSE TRUE Boolean Or Lowest
7.4.2.4 Statements
Key- Example Description
word
; ; Blank statement
= Varl := 12; Assigning the value 12 to the variable name
given on the left.
f(i1, 12, ...) ol := Function call, see also the description of the
concat (iDir, iFile, vl); function blocks
IF IF il < 12 THEN Conditional statement.
ol :=1; e .
L The condition is a Boolean expression (that
[EIISIF ;1 1‘12 THEN yields the result "TRUE" or "FALSE")
(e} = ;
ELSE Optional extensions are given in square
ol := 3; brackets [...].
END TIF;
CASE CASE il OF Case statement.
1: 1:=3; A .
5. ol 4 The argument "i1" is an expression of type
Po0LEER ANY_INT or ENUM.
3,4,5: ol :=5;
02 := 6; There are one or more statements per case.
11..15: ol:= 11; A case can have several integers (3,4,5) or
[ELSE ol := 0; enumerators or ranges of integers (10...15).
02 := 0; The ELSE branch is optional.
END CASE; Optional extensions are given in square
brackets [...].
i85 Issue 4.2.4 129

Manual

ibaLogic-V4

Key- Example Description
word
FOR FLAG := FALSE; Unconditional loop (Iteration).
FOR ix:= 1 TO 100 BY 2
DO +x [] The step (BY xx) is optional. If it is not
)) present, the step is 1.
IF ol[ix] = iy THEN
FLAG := TRUE; The type of the loop variable is ANY_INT
EXTIT: and it should not be modified within the loop.
END IF; Optional extensions are given in square
END FOR; brackets [...].
There is a risk of endless (infinite) loops
WHILE WHILE il > 1 DO Conditional loop
ol := o0l/2; .
END WHILE; Attention
There is a risk of endless (infinite) loops
REPEAT REPEAT Conditional loop
l:= ol * 11; . . .
UNTILO 1 >o 100 OlO The difference to WHILE is: The loop is
© executed at least once, even if the condition
END_REPEAT; is not met right at the beginning.
Attention
There is a risk of endless (infinite) loops
EXIT FLAG := FALSE; Premature termination of a FOR, WHILE or
FOR ix:= 1 TO 100 [BY 2] |REPEAT loop.
o . . The first statement is executed after the next
IF ol[ix] = iy THEN end of the loop, i. e. with nested loops,
FLAG := TRUE; execution continues with the next higher
EXIT; level.
END_ T Optional extensions are given in square
END_FOR; brackets [...].
IF FLAG THEN (* found*)
RETURN OFLAG := FALSE; Return statement, premature termination of
FOR ix:= 1 TO 100 [BY 2] |the function block.
Do)) Example: If the value iy is contained in the
IF ol[ix] = iy THEN array ix, the result is TRUE, otherwise it is
oFLAG := TRUE; FALSE.
RETURN;
END IF: Optional extensions are given in square
— brackets [...].
END FOR;
ARRAY access |<ArrayType>[index,..] The indices are given in square brackets
ol := iArray[0]; Access to a 1-dimensional array
ol := iArray[0,0,..]; Access to an n-dimensional array
Access to a nested array
ol := iArray[0][0]; . .
For more information, please refer
to "ARRAY TYPE Group, Page 148".
Expressions are not permissible as indices,
e. g.: MyArray[v1+1]

130

Issue 4.2.4

ibaLogic-V4 Manual
Key- Example Description
word
ENUM access Enumerator Example:
. "Switch" is an ENUM type,
IF (11 > 0) THEN "Forward", "Stop", and "Back" are the
vl forward; enumerators.
ELSIF (il < 0) THEN _ e
vl back; The type of the variable v1 is "Switch".
ELSE For more information, please refer to
vl stop; "ENUM TYPE Group, Page 146
END TIF;

7.4.2.5

Structure access | <STRUCTURE NAME>.ELEMENT The structure elements are separated

with "." from the structure elements.

ol. Temperatulre = 1il;; Example:
ol.Speed i2;
"01" is a variable of type structure.
"Temperature" and "Speed" are structure
elements.
For more information, please refer to
"STRUCT TYPE Group, Page 148".
Constants
Description Example

Integer and bit strings
(except BOOL)

-12 0 123 456 +986

Decimal representation

Binary representation

241111 1111 (255 decimal)
2#1110 0000 (240 decimal)

Hexadecimal representation

16#FF or 1o6#ff
16#00F0 FFEO

Real

-12.0 0.0 0.4560 3.14159 26

Real with exponent

-1.34E-12 ODER -1.34e-12
1.0E+6 ODER 1.0e+t6
1.234E6 ODER 1.234e6

BOOL

0 OR FALSE
1 OR TRUE

Time constants

Type identification with: , T#",

Time specification with: ,d" (day), ,h" (hour), ,m" (minute),
,S" (second) and ,ms" (millisecond).

T#12d12h17m42s

T#16d 2h 5m

For all specifications, in general:

It is permitted to use a simple underscore for optical structuring.

Issue 4.2.4

131

Manual ibaLogic-V4

7.4.2.6 Strings

Strings are enclosed in single quotation marks.

A'$ character followed by a hexadecimal number is interpreted as ASCII code.

Note

IEC also permits double quotation marks. These WSTRING have not been
implemented at present.

Special characters allowed in strings

Combination Interpretation when printing out

$$ Dollar character
$ Single quotation mark
$L or $I Line feed (LF)
$N or $n New line (NL)
$P or $p Form feed (page)
$R or $r Carriage return (CR)
$T or $t Tabulator
Note

A RL (Carriage Return / Line Feed) is equivalent to a $N (New Line) and is, hence,
displayed automatically in the function block during further processing as $N (see
entry in STANDARD VALUE and display under VALUE).

Index Data type Mame Default Description

e [= Variable bype: Input

1| STRING i1 "SR$L" 0y
1= Variable type; Cutput
1/INT ol u]

figure 71: Variable entry

Characteristics and examples of strings

Example Explanation
" Blank string (Length = 0)

'‘A' String of length one, contains the character A

" String of length one, contains the blank character

'$" String of length one, contains the single quotation mark

String of length one, contains the double quotation mark

'RL' String of length two, contains the ASCII characters for CR and LF
'$$1.00' String of length five, contains "$1.00"
String of length two, contains "A" and "E";
'AE' In one case, directly as ASCII characters and
'$C4$CB' in the second case, with the corresponding hexadecimal code of the

extended character table (see "Character tables, Page 322")

132

Issue 4.2.4 m

ibaLogic-V4 Manual

7.4.3

7.4.3.1

Macro block

You use macros in order to combine associated functions and thus, achieve a clear
program layout.

Properties:
U You can export macros.

A You can copy macros to the global folder, and, as a result, you can use them
several times and even in other projects.

Q Macros may contain other macros and, of course, user-created function blocks, too.

O No OTCs, switches and sliders are permissible within macros, but IPCs are
allowed. Links to other program components are permissible only with input and
output connectors.

Q You cannot use any hardware input and output resources directly within macros.

U A macro that has been created can be expanded again, i. e. the macro is resolved
and the blocks that it contains are displayed at the next higher level.

Creating a Macro Block

Macros are created manually in the same way that function blocks are created.

Procedure

1. Position the mouse pointer on a free location in the program window and call up
"New... - New Macro Block..." in the context menu. A dialog box is displayed for
entering the block names and variables. For more information, please see "Function
Blocks, Page 123".

2. Exit the dialog with <OK>. A blank macro block is displayed.

IMPL_MB._1
= INPUTY
[T INPUTZ

OUTPUTH |
[~ INFUT3

[~ INPUT4

3. Double click on the macro block displayed in order to open the internal graphical
programming interface.

4. Place and manage the function blocks or other macro blocks within this macro
block so that you achieve the desired functionality.

Example

In this example the integer input is monitored for changes and every change is counted
and placed at the output.

figure 72: Integer monitoring

Issue 4.2.4 133

Manual ibaLogic-V4

As in the case of every program, a new register is created for the contents of the macro
with the macro name within the program designer.

Please note the evaluation context here. You come to the calling level by clicking on
this. For further information, see "Arrangement of the Tabs and Programming Windows,
Page 62".

7.4.3.2 Opening a Macro

Procedure
2 Double click on the macro block instance in a program or macro in the Workspace

Explorer.
7.4.3.3 Combining existing components into a Macro Block

ibaLogic provides the option of combining several blocks already existing into one
Macro Block.

<2 To do this, select the blocks that need to be combined, as illustrated in the following
diagram.

Note

Please note that,
U you also mark the associated links when making the selection.
Q no OTCs have been marked.

O links whose target or source block are not selected, are created as
macro input or output.

< Open the context menu using one of the elements selected.

2 Select the option "Implode To Macro".
The "Edit Function Block" dialog box is displayed.

DEE_‘. a]

= FALSE q_ a a T AEB_1 i}
:xcc::_:‘s: OUT Y 1000 _=:.c5-: E—:-: .:u'r|j!--,;-_ 1581 .. B
g de——s. i M
»
Copy Chrl+C
| Delete Del
Select Al Chrl+A

Show OFfF-task connectors Crl+Shift+35

Implode To Macro

Function properties

2 Assign a meaningful name to the new macro block and to the inputs and outputs.
Assign meaningful names that conform to the IEC standard.

134 Issue 4.2.4 @

ibaLogic-V4 Manual

7434

Tip
You can also make these changes subsequently by clicking on the macro created
using the right mouse button and selecting the macro properties.

Result
The result is a new macro block (IMPL_MB_1) having the same functionality as the
blocks selected previously.

IMPL_MB_1
I INPUT1
et
7w:dT:0UTPUTY| cu e
[INFUTS ;‘S Q
T~ INPUT4 St

figure 73: Macro block (IMPL_MB_1)

2 You can open the macro by double clicking and continue to edit the graphical
elements.

In the online mode, you can also see the current values in the value pads depending
on the evaluation context.

For further information on the evaluation context, please see "Arrangement of the Tabs
and Programming Windows, Page 62".

Expanding a Macro Block

An existing macro block can be expanded again. In doing so, the blocks defined are
placed at the next higher level.

Procedure
1. To do this, mark the macro block.

2. Select "Expand From Macro" in the context menu.

Example
A simple macro block having an internal adder that adds both inputs needs to be
expanded again.

Result
The following diagram appears after expanding:

d The adder has been revealed.

U The original macro definition, however, continues to be available in the block library.

IMPL_MB_1 SEL 2

[INPUTT — G
———— |WPLIT2 —IND OUT -
T e L > —] E

[~ INFUT4 N e

[T IN2
figure 74: Macro block MB_Set-point_1 figure 75: Expanded connection
Issue 4.2.4 135

Manual ibaLogic-V4

744 Creating your own DLLs
Creating macros and function blocks using ST is a very easy option for handling
several tasks in the field of automation technology. But just as it is easy to create the
macros and function blocks, it is also simple to copy them and to understand their
contents, i. e. their function.
However, sometimes it is desirable to disclose less of one's own technological
competence and, instead, for example, in case of a highly intelligent process-oriented
technical solution, it is desired to prevent further uncontrolled proliferation of this
technological know-how.
In such a case, it is beneficial to have the option of creating your own DLLs that contain
the knowledge only in compiled form and, thus, cannot be extracted easily.
You can also realize these special connections
U in order to create complex blocks.
Q in order to work with the Windows environment.
Q in order to allow tasks to execute in your own thread, among others.
In this manner, you can also integrate another high-level language under certain
conditions.
You can then see the DLL created in ibaLogic as a completely normal function block
with the name, inputs and outputs. This can be differentiated from an ST function block
only in the fact that you do not see any code in the program component.
Other documentation
This section contains only a brief overview, and detailed instructions are furnished on
the CD supplied (e. g. Manual "ibaLogic_DLL-Erstellung_in_C++_v2.0_de.pdf' in the
\ibaLogic_V4.x.x\Samples-DLL\ directory).
Note
Using DLLs requires a license. The DLLs are not evaluated without a valid dongle.
Compiler
All DLLs written in C++ or Fortran are supported.
The following compilers have been tested for writing and compiling the DLLs:
Q Microsoft Visual C++ 5.0
Q Microsoft Visual C++ 6.0
Q Intel Visual Fortran 10.0
Q Microsoft Visual C++ 2005, 2008, 2010
However, there are still differences for the two device classes with ibaLogic (WinXP or
PADU-S-IT). DLLs for the PADU-S-IT platform must be compiled specifically for
Windows-CE.

136 Issue 4.2.4 i8]

ibaLogic-V4 Manual

7.4.41

7.4.4.2

7443

Source Files and Descriptions Required

The following source files and descriptions, which are supplied on the ibalLogic
installation CD, are necessary for creating a DLL:

Descriptions:

@ Manual on creating a DLL with C++
(for WinXP and PADU-S-IT)

U Manual on creating a DLL with Fortran
(only available for Windows XP)

Files: (Please refer to the descriptions for the exact names of the files)

Q Framework file:
It contains the procedures and the DLL body; the user can add inputs or outputs or
modify the procedures, InitEvaluation, Evaluate and ExitEvaluation. Either in C++ or
Fortran.

Q Other files depending on the language:
Assignment of DLL procedures and numbers, interface definition etc. It is not
necessary for the user to make any modifications here.
Requirements and Notes
You should take note the following when creating DLLs:
Q The runtime of the DLL increases the runtime of the tasks in which they are called.
Q iba recommends that you remove time-consuming functions to threads.

Q ibalLogic can be started as the executing program to test the DLL.

Important Note

ibaLogic cannot detect and trap programming error in a DLL, which means that such
errors can lead to ibalLogic "crashing". Please bear this in mind as a user when
creating a DLL.

Integrating the DLL into ibalLogic

When the DLL was created, it must be copied to a folder of ibalogic.
(Usually "C:\Program Files\iba\ibalLogic v4\Server\DII").

After ibaLogic Server restarts the next time, this DLL is available as a function block in
the "CUSTOM" folder and can be dragged & dropped like any other block in a program
and integrated in it.

Example

The "Para_File_Read_Store_DII" has been created and copied to the folder. It is
contained in the "CUSTOM" group.

Issue 4.2.4 137

Manual ibaLogic-V4

Function Units

=1 Global librare %
-1 ANMALYTIC

-1 ARITHMETIC

t-1_ BISTABLE

- BIT_STRIMNG

- CHARACTER_STRING

+-L 1 COMMUNICATION

t-1_d COMPARISON

-1 COUNTER

=-{E CUSTOM
D ExecuteDil

[Tl LogFile_String_wWriteDl
QDBC_S50L_AccessDIl
ODEC_SGL AcceszDI_W150031

X
a
[7] Para_File_Read_Stars_DIl
1
(A

-
t
-
T

=
q
u

Para_File_Read_Store_Dll_lnvalid
Para_File_Read_Store_Dw_ DIl %
|

<

figure 76: Para_File_Read_Store_DIl in the function block navigator

Para_File_Read_Stors DIL_1

WALUES oVALUES
iPATH oSTORE_DONE
iFILENAME oREAD DONE
iNUM_VALUES_STO... oNUM_VALUES_READ
iISTORE oLAST ERROR
iREAD oERROA_STRING

figure 77: Para_File_Read_Store_DIl as a function block in the program

Edit Function Block D@@

General
Definition narme: F I 7 ! Read write O

Deseriptior: I Hem 3 i |

Hurnber of inpuits [F] Number of outputs] Number of varisbles:

I@ Arguments |
|
[|
“ | variable type
Index Data bype Mame Default Description
;= Variable bype:! Input
1| ARRAY [0..127] OF LREAL iWALUES ‘alue atray ko store inko File
2. STRING iPATH 3 Path Fnr.ﬂ\a to store
3 STRING IFILEMAME E Filename for file to store
4 DINT iMUM_VALUES_STORE o Number of values to store
S BOOL iSTORE FALSE Stare command
&|BooL |REsD FALSE Read command
I=/ Yariable kype: Cutput .
1 .ARRA\‘ [0..127] OF LREAL | oWALUES Walue array read From file
2| BOOL 0STORE_DONE FALSE Storage of values in file d...
3|BOOL oREAD_DONE FALSE Reading walues from file ...
4. DINT .oNUM_VALUES_READ 1] Mumber of values read fr...
5. DWORD .oLAST_ERROR 16400000000 Last Errar indication
& STRING oERROR_STRING i Last Error String

figure 78: Para_File_Read_Store_DIlI properties

2 The "Edit Function Block" window is displayed when you double click on the
function block.
You cannot see the code. The inputs and outputs including their descriptions are
visible.

138 Issue 4.2.4 m

ibaLogic-V4 Manual

7.5

7.5.1

Data types
A data type is assigned to each variable.

In contrast to version V3, ibalLogic-V4 not only supports the elementary data types and
arrays, but also composite (structures) and other user-defined data types.

The data types that can be used in ibaLogic can be divided into the following
categories:

Q Standard data types
Q Composite data types such as ARRAY, STRUCT and ENUM,
Q Derived data types that are formed from the groups mentioned above.

As a user, you can define your own specific data types of the "composite" or "derived"
category.

Note

For more information, please refer to "Data types, Page 278".

Define Data Type
2 Click on the "Data Types" button.

The folder is displayed in the navigation area as a tree.

The following folders are created for the non-elementary data types in a global library
and also under each project of the workgroup:

U Direct derived types
Standard data type with a fixed default value

4 Sub-range types
Standard data type with a fixed default value and limited range of values

Q String derived types
String data type with a fixed length and default text.

U Enum types
Enumerations: Names are defined instead of integer values

Q Array types
Array of elementary data types with a fixed dimension and depth.

Q Struct types
Structure consisting of elementary data types

Issue 4.2.4 139

Manual ibaLogic-V4

Data Tvpes

—i Global library

[direct detived types

|3l subrange types

|0l string derived types

{20 enurn types

=5l array types

.....) ChYV_BOOL_ARR

..... 0 CNY_DWORD_ARR
.....) CMY_UDINT_&RR

.....) FOBFBUF_BOOL

.....) FOBFBUF_INT

..... {73 FOBFBUF_REAL

..... 3 ICPBUF_BOOL

.....) ICPBUF_DINT

.....) ICPBUF_INT

.....) ICPBUF_REAL
Z-E0 struct types

..... <= DFw_tMODULE_HDR
..... <= DPFwW_MODULE_SIGMNAL_DEF
----- < BTSTATUSSTRUCT
..... = Pumpe

_ﬁ Project_Data_Types
L[l direct derived types

----- [subrange tepes

Eﬁ string derived types

m enum fypes
m array tvpes

LT structtypes

figure 79: Data Types

The "Array types" and "Struct types" contain data types that have already been

predefined by

ibaLogic.

These are:

0 CNV_BOOL_ARR/CNV_DWORD_ARR/CNV_UDINT_ARR
Single-dimensional arrays with 58 elements. These are required when importing
former ibaLogic V3 projects.

QO FOBFBUF_BOOL/_INT/_DINT/_REAL
Single-dimensional arrays with 256 elements, usage in "Buffered Mode". For more
information, please see section "Buffered Mode, Page 192".

Q0 ICPBUF_BOOL/_INT/_REAL
Single-dimensional arrays with 1,024 elements, used for connecting analog inputs
in the PADU-S-IT platform.

For more information, please see "ibaPADU-S-IT Platform, Page 204".

Q DFW_MODULE_HDR/DFW_MODULE_SIGNAL_DEF
Structure for transferring data to the DAT_FILE_WRITE block.

Q0 SSTSTATUSSTRUCT
Structure for coupling the diagnostics information to the Profibus master card SST.

140

Issue 4.2.4

ibaLogic-V4 Manual

7.5.1.1

7.5.1.2

7.51.3

Note

You can suppress the display of the data types that are predefined and generated
automatically if you select the "Tools — Options — General — System" menu and enable
the "Suppress Generated Data Types" option.

You can use the data types in the program even if the display is suppressed.

Procedure
You can define a data type in different ways:

Q Under the project
U In the global library

Q During the creation of a function block

Under the project

1. Click in the function tree with the right mouse button on the desired
category under the project.

2. Select "New" in the context menu.

In the global library

1. Click on the function tree with the right mouse button in the global library on the
desired category.

2. Select "New" in the context menu.

When creating a Function Block

The option of creating a new data type is provided in the selection box for the data type
of a variable.

Arguments
‘ariable type

Index Data bype Mame
=! Yariable type: Input
T H

= Yariable type: Qutput RIS

MEW DERIVED TYPE

MEW SUBRANGE TYPE

MEW STRING TYPE

MEW EMUM TYPE

MEW ARRAY TYPE

MEW STRUCT TYPE .

figure 80: Creating a data type for a block

Procedure
1. Create a variable with the appropriate data type.

2. Test the data type created to ensure that it is error-free. If the test was successful,
confirm the entry with <OK>.

Result
If the syntax is error-free, the data type is created under the category selected.

Issue 4.2.4 141

Manual ibaLogic-V4

7.5.2

7.5.3

7.5.4

Modify Data Type

Note
A data type that is already in use cannot be modified.

When you exit the dialog with <OK> or <Accept>, your attention is drawn to the fact
that you can create a copy under a different name.

Procedure
1. Click with the right mouse button on the data type.

2. Select "Properties" in the context menu.

3. Modify the parameters.

Delete Data Type

Requirement
You are not using the data type to be deleted.

Procedure

1. Click with the right mouse button on the data type.

2. Select "Remove" in the context menu or press
the function key.

Manage Data Type

Copy to the global library

If you need to use a data type, which is defined in one project, in another workspace
also, the data type must be copied to the global library.

Note

If you use data types from the global library, they are automatically copied to the
project.

If you use a data type from another project, this has to be copied to the global library
first.

142

Issue 4.2.4 m

ibaLogic-V4

Manual

Procedure

1. Click with the right mouse button on the data type under the project.

2. Select "Copy To Global Library" in the context menu.

=-R8 Project_PRAC
direct derived types
m zsubrange types
{]i ztring derived types
Ehurm types
array ypes

—Eﬂ struct types

Mew, ..

Delete

Copy ta Global Library
Export ko 5T...

Properties

Note

If you copied an array to the global library and then change the original, you have two

arrays with the same name, however, with different contents.
When selecting in the FB, [GLB] is put in front of the array from the global library.

7.5.5 Export Data Type

If a data type, which is defined in another database under the global library or in a
project, also needs to be used in another database or in another programming tool, the
data type must be exported as a text file.

Procedure

1. Click with the right mouse button on the data type.

2. Select "Export to ST" in the context menu.

The "Export" dialog box is displayed.

.-,i_;...i*_i Project PMAC
m zubrange typesz

@ enum types
Ei array types
—Eﬁ struct types

el Fumpe

'Ei direct derived tvpes

m string derived types

T, ..

Dielete

Copy to Global Library
Expoark o 5T...

Properties

3. Specify the target folder and file name.

O

Issue 4.2.4

143

Manual ibaLogic-V4

7.5.6

7.5.7

7.5.71

7.5.7.2

7.5.8

Import Data Type

Requirement
ibaLogic is not in the online mode.

Procedure
2 Click on the "File — Import — Structured Text" menu.

Use Data Type

After a data type has been defined you can use it:

U during the creation of a function block

U during the creation of a structure and/or array data type

U when creating inputs and outputs

During the Creation of a Function Block

2 Select the user-defined data type under the
"Data Type" column while creating a variable in the block editor.

During the Creation of a Structure Data Type

2 Select a user-defined data type in the "Data Type" selection box while creating the
structure elements in the data type editor.

Note

You cannot directly access data types which you defined in a project of another
workspace.
For doing so, use the Export/Import function or the global library.

User-defined Data Types

Procedure
2 Click with the right mouse button on a data type group.

The "Edit data types" dialog box is displayed.

Edit Data Type

General
Mame: :SimDIeTypej Read wiite @
Description: |
Type properties
Type: “\N“T R Default: |

144

Issue 4.2.4 m

ibaLogic-V4 Manual

7.5.8.1

7.5.8.2

7.5.8.3

For all data types, this dialog box consists of:
Q "General" section (identical for all data types)
Q "Type Properties" section

QO "Elements" section

General

0 Name:
Name for the user-defined data type. The data type is then available under this
name in the selection boxes.

Q Description:
Any text for the description of this type. The description can be seen only here in
the definition.

Type properties
a Type:
Defines the data type.

Q Default value:
Initial value (Preset value)

DIRECT DERIVED TYPE Group

This is to define an elementary data type for which a new name and a default value can
be specified.

With this, for example, constants such as the number "Pi" can be defined with the
LREAL data type.

SUBRANGE TYPE Group

This is an integer data type with a limited range of values and a default value.

You can use it, for example, to define indices for arrays having a specific depth.

Important Note

This data type is not limited. There is merely an error message at runtime in case the
range is exceeded.

This data type is only checked in case of direct assignments during compilation, there
is no runtime checking as to whether the range is exceeded.

STRING DERIVED TYPE Group
This is a string data type having a limited length.

You can use it to define text strings having a fixed initial value, for example, for error
messages.

Note

The maximum length of a string is 250 characters.

Issue 4.2.4 145

Manual ibaLogic-V4

7.5.8.4

ENUM TYPE Group
A data type of the category ENUM TYPE is an enumerator.

The data type is used to designate the values of a variable symbolically, e. g. the
position of a switch.

Example: Data type "Switch"

You would like to create a data type "Switch", which has the 3 positions, FORWARD,
STOP and BACK.

To do this, you need to define the ENUM TYPE Switch, with number 3 and the switch
positions as enumerators.

Edit Data Type
General
M ame: iM}'Switch | Read write @
Cescription: | |

E numeration properties

Default: | Forward

Caurt: | Kl !

Elements

|' Murn | Enumerator |

1| 5Skop
2 | Forward
Back

« XE

figure 81: "Edit data types" dialog box
Please note that you access the individual enumerator values using "Enumerator" in
"Structured Text".

146

Issue 4.2.4 @

ibaLogic-V4 Manual

Assign and retrieve values:

Eg Lbﬂmﬂ:
yverales
& Wariable bype
Incax Dists bype Plsme Di=fsul
L3 =
I BOCL Foreards FaLsE
2 BooL backwards |FaLsE
1= Varishle bype: Output
1 MySwkch ol Shop

Structured Text

1f forards then

ol = Forward:
elsilf backuards chen

ol = Back:
elos

ol = Stopr
emd_1f:

| checkst | | Dissble Intelisznee |

figure 82: Variables Editor 1
] Arguments

4
¥ Variable type
. Tredac Diaba bypes Nama Disfaul
} i
1 |REAL it 100.0
2| MySwitch 2 Saop
= Wariabla Typa: Oubput
1/ REAL ol 0.0

if (i2=Forward) then
ol = il;
elmif [iZ=Fack) then
gl = —-il;
elae
ol = 0.0;
=nu_1f;

| Check ST ”mmhm|

figure 83: Variables Editor 2

Note
_ Please note that you cannot assign integer values to the enumerators.

Exception:
An OPC connector is declared as type Enum and read or written externally. In this

case, the OPC Client writes or reads the enumerator number as an integer.

m Issue 4.2.4

147

Manual

ibaLogic-V4

7.5.8.5 ARRAY TYPE Group

Arrays are single-dimensional or multi-dimensional fields. All elements of an array have
the same data type. However, this is not restricted to the elementary data types, but
you can also form arrays of user-defined data types, structures, strings or arrays.

Example: 2-dimensional integer array

Parameter Explanation

Type Base type of the array elements

Number Number of dimensions

Default value Default values of the array
Examples

l1-dim-Array:
2-dim-Array:

[1.0,2.0,3.0]
[([1.0,2.0,3.0]1,[4.0,5.0,6.01]1

Lower / Upper limit | The value range of the element index determines the depth of
the individual dimensions. Maximum value: 0 to 32,766

Access to the elements of an array in Structured Text:

i1 is a variable of array type.

4d 1-dim- Array: ol :=
a 2-dim- Array: ol :=
02 :=
U array_of _array: o1 :=
02 :=
o3 :=
U array_of _struct: o1 :=

o2 :=
il[o0].

o1, 02... are variables of element type;

i1l[o0];
il[0.0]; (*
i1[o,1]; (*
iifojroy; (*
iifojriy; (*
i1[ijroy; (*
i1[o0]; (*
(*

elem;

1st
2nd
1st
2nd
1st
1st

element of the 1lst dim ¥*)
element of the 1lst dim *)
elem. of the 1lst array ¥*)
elem. of the 1lst array ¥*)
element of the 2nd array *)

structure of the array ¥*)

elem. of the 1lst structure *)

Note on Structured Text

The indices of arrays can be only variables having "Int" data type. In contrast to
ibaLogic V3, no expressions such as [ix+4] are allowed.

148

Issue 4.2.4

ibaLogic-V4 Manual

7.5.8.6 STRUCT TYPE Group

In contrast to arrays, you can group variables having different data types under a
structure. You have to define the elements separately, and while doing so, you can use
all data types defined so far, including the user-defined data types and arrays.

You can define a name, description and default value for each element of the structure.

Example: Pump
You need a "Pump" data type for the pump "Type E7F99" with the properties

"temperature", "speed", "state" and "error".

For this purpose, you define the "Pump" data type with the description "Pump Type
E7F99" and the number 4. "Elements" defines the associated properties.

Edit data types
General
; | Readwrits a]

Description: |Purnp Type E7FA3

Structure properties

Default: I I
Count; | 4 _3_!
Members
|' Murn | Type | Tarne Description Defaulk |
1| INT Temperature A
2 |REAL RotarySpeed rpm
SINT Skatus 0=0fFF 1=0n
rReal [v] [l |Errarstring | .

figure 84: "Edit data types" dialog box

Parameter Explanation

Type Base type (even user-defined data types are allowed).
Name Name of the element.

Description Personal explanation of the data type.

you select the Initialization to a default value (Preset).

settings

m Issue 4.2.4 149

Manual ibaLogic-V4

Access to the elements of the structure in Structured Text:

1 (*ol is a variable of structure type pump, il, 12... are
variables of element type; *)

2

3

4 ol.Temperature := 1il;; (* of INT data type *)
5 ol.Speed := 12; (* of REAL data type ¥*)
6

7 (*v1 is a variable of Pump structure type;*)

8

9 if (vl.Temperature > 80) then
10 vl.Status:= 99;
11 vl.Error:= 'Temp. too high';
12 else
13 vl.Status:= 0;
14 vl.Error := 'No error';
15 end if;

figure 85: Structure in Structured Text

150 Issue 4.2.4 m

ibaLogic-V4

Manual

8 Program Elements

A graphical ibaLogic program contains the following elements:

Q

I T A Iy

Blocks

Inputs and Outputs

Links (Connections)

Converters, splitters or joiners added automatically

Comments

8.1 Create Program Element

You can create all elements that a graphical ibaLogic program can contain.

Procedure

1.

2.
3.

Open the context menu by clicking with the right mouse button on a free area in the
programming field.

Select "New..." in the context menu.

Select the desired program element.

8.2 Mark Program Elements

You can mark individual or multiple program elements in the following manner.

Procedure

1.
2.

Select the desired element by clicking with the left mouse button (single selection).

Select the desired elements by clicking with the left mouse button and pressing the
<Shift> or <Ctrl> simultaneously (multiple selection).

Drag a rectangle (Lasso) over one or more elements to be selected by clicking on
the left mouse button.

| doing so, existing connection lines and converters, if any, between the blocks are
also marked.

Select all elements by pressing the <Ctrl> + <A> keys.

Issue 4.2.4 151

Manual ibaLogic-V4

Result
The elements marked are displayed with green, blue or gray dots.

When you mark several elements, one element is always green. This is the reference
point of the grouping.

o o One element is marked.
.-!-.EIEI_?
a ::,_ ouT Q
Mt
o O One element is marked, but the focus lies on another
GEN EFE.TDH_T element.
GENTYFE
AMPLITUDE
- OFFSET OuT| D_
PERICD
PULSE
(=] o (]
Many elements are marked.
o o8 8 SR Y
o I o O N o | The element marked green is always the main element of
iz SUT iz PYT lthe group marked.
o o o o 1] o

figure 86: Selected element

8.3 Move Program Element
You can move the blocks (and connections) already marked by keeping the left mouse
button pressed.
Procedure
> Move one or more elements selected by keeping the left mouse button pressed.
Remarks
This applies to lines with limitations.
8.4 Align Program Elements along an Edge
All program elements can be aligned along an edge. You can use this for obtaining a
clear block layout.
Procedure
1. Mark the elements to be aligned (Blocks, Intra-page connectors and Off-task
connectors).
2. Select the desired function the "Function Diagram - Align".
Remarks
This is not applicable to inputs / outputs and lines.
152 Issue 4.2.4 i8]

ibaLogic-V4 Manual

8.5 Copy Program Element

You can copy individual or multiple program elements.

Procedure
1. Mark the elements to be copied (Blocks, Intra-page connectors and Off-task
connectors).

2. Press the key combination <Ctrl> + <C> to copy the elements selected to the
clipboard.

3. Press the key combination <Ctrl> + <V> to copy the elements from the clipboard
into the programming field.

@ Tip
. Instead of the key combination, you can also select "Copy" and "Add" in the context
menu.

If you have selected multiple blocks, the connecting lines between these blocks also
get copied.

This is not applicable to inputs and outputs and lines marked individually.

8.6 Delete Program Element

You can remove individual or multiple program elements.

Procedure
1. Mark the elements to be deleted (Blocks, Intra-page connectors and Off-task
connectors).

2. Press the key.

Remarks
Instead of the key, you can also select "Remove" in the context menu.

8.7 Generate Input / Output Variables

Prerequisite
You have selected the "Inputs - Outputs” button.

Procedure

2 Drag an input or output variable at any position in the left or right input or output
border.

Note

In a program, an input and output can be created only once.
In a project, an input can be used several times. An output can be used only once.

@ Issue 4.2.4 153

Manual ibaLogic-V4

8.8 Graphical Connections

In graphical programming, a graphical connection is used to transfer the results of one
function to another.

There are 3 different forms for this:

Q
Q
Q

Direct connectors
Intra-page connectors

Off-task connectors

8.8.1 Direct Connectors

8.8.1.1 Types of connection lines

ibalLogic uses line types of different colors that represent different groups of data types.

Line type Explanation

o6

a Binary connectors are displayed according to their status,
red (TRUE) or blue (FALSE).

a Arrays are displayed using green lines. Only arrays
having identical length and data type can be connected
with one another.

o1

Structures are displayed in orange color.

i Enum types are displayed in yellow color.

o2

All other elementary data types are marked with black
connectors (e.g. INT, REAL...)

8.8.1.2 Create Direct Connector

Procedure

1.

Click with the mouse on the output connector of a block.

2. Keep the left mouse button pressed and drag a connector to the input connector of
a block.
vaL @ﬁom VAL W‘:u? T
Remark

If the result of one block is used in multiple blocks, generate a branch by dragging a
line from one input connector to another existing one.

Near a connectable connector or connectable line, the mouse cursor jumps to the
connector or the connecting line (Magnetic effect).

154

Issue 4.2.4 m

ibaLogic-V4 Manual

8.8.1.3

8.8.2

8.8.2.1

Modify Direct Connectors

Procedure
1. Mark the connector that you wish to modify.

The marking is displayed by small green squares and diamonds.

SWITGH_1
VAL %om

SLIDER_1 8
Low = OUT [e~ IO OUT

HIGH W 10Ut 1N
GENERATCR_I
GENTYRE
AMPLITUDE
OFFSET OUT|

FERIOD
FULSE

SEL.#

2. Modify the line by moving the green squares with the mouse.

3. Click with the mouse on the green diamond on the connecting line in order to wire
the line connection.

4. Drag the end to a blank area, which deletes the connecting line.

5. Drag the end to another connector. The connecting line is reconnected.

Note

Connecting lines that you have arranged manually are re-evaluated by the auto-router
when the associated block is moved. Your modifications are rejected as a result.

Intra-Page Connectors

An intra-page connector (IPC) merely represents a drawing simplification. In the
process, the IPC replaces a connecting line.

This is recommended when several objects on one page need to be connected or
"long" connections are required across multiple pages. The IPC is not a programming
object, but merely acts as a line substitute.

The IPC can - be used as direct connectors - only within a program or macro level. You
cannot have connections from a macro to the call level. You must define inputs and
outputs in the macro block for this purpose.

Create Intra-Page Connectors

Create Intra-Page connectors as line substitutes.

Prerequisite
You can generate an IPC at an input connector only if an "IPC Source" has been
defined earlier.

Procedure

2 Press the <Ctrl> button and simultaneously drag a connecting line from one output
connector to a free location in the programming field.

Issue 4.2.4 155

Manual ibaLogic-V4

8.8.2.2

8.8.2.3

2 Menu procedure similar to creating off-task connectors. However, major
modification.

= Create IPC source
= Connect IPC (as described here)

= Connect IPC via menu

Remark

To connect an IPC to an input, follow the same procedure.

Hold down the <CtrI> key and drag the line from an input connector to a free area in
the program field. Subsequently, the "Existing IPCs" dialog opens. Select the
corresponding IPC and quit the dialog by clicking <OK>.

BE_1 &
I INE

nz out
‘GENERATOR_1
GENTYPE
AMPLITUDE OR_1
OFFSET OUTH I” GENERATOR_1.0UT EING

FERICD =t =
i —————————T" N2 OUT!

e 1N

GENERATOR_1.0UT|

Existing IPCs

Please select an [P from the curently existing ones

IPC Name Connected ta
GEMERATOR_1.0UT PROG_OTC_IFC.GENERATOR_1.0UT

GENERATOR_1.0UT[§ =————————————TT N1

" ouir

figure 87: Properties window

Modify IPC Names

ibalLogic creates a name automatically, consisting of
"Block instance name.connector name". This name can be changed.

Procedure

1. Double click on the IPC source.
The "Edit IPC " dialog box is displayed.

2. Assign a name and a comment to the IPC source. Assigh meaningful names.

Result

The modification is accepted automatically in all "IPC Targets" connected. "IPC Targets"
cannot be directly modified.

Track IPC

Load the corresponding program page of the IPC selected.

Procedure
1. Click with the right mouse button on an IPC.

156

Issue 4.2.4 m

ibaLogic-V4

Manual

2. Select "Go To ->" in the context menu.
You can then see the generator (output connected and all consumers (inputs)

connected.

3. Click on any connection displayed.

Result

The appropriate program page is loaded and the IPC is marked.

Context menu Explanation
01. -> Generator_1.0UT Generator
02.°Generator_1.0UT -> Marked IPC
03. Generator_1.0UT -> Consumer

o o =] I
O GENERATOR_1.0UT
]) -

Copy Chri+C

| Delete Del
Select Al Chrl+a

GoTo-=
Shove OFF-kask conneckors Ctr-shift+5

Implode To Macro

Inkra page connector propertiss

01, -= GENERATOR_L.OUT
02, GENERATOR_1.0UT -»
03. *GEMERATOR _1.0UT -=

:

figure 88: Track IPCs

8.8.3 Off-Task Connectors

Off-task connectors (OTC) are used as program-independent connecting elements are
always required when there is communication between programs.

In addition, OTCs can be set as read-enabled and write-enabled for OPC Clients.

8.8.3.1 Create Off-Task Connectors

Procedure

1. Position the mouse pointer at a free location in the programming field.

2. Open the context menu by clicking on the right mouse button.

3. Select "New... - New Off-Task Connector".
The "Edit Off-task connector” dialog box is displayed.

Issue 4.2.4

157

Manual ibaLogic-V4

Read wirite @

v

Connector Type
& Input [target] Data type: REAL -

) Dutput [source) Default value: | 0.0
OPC

[] OPC wisible
[] OPC writable

4. Assign the parameters required.

Note

The OTC name must conform to the IEC naming convention.
See "Naming conventions, Page 277".

Establish a program-independent connection

Procedure

Method 1:
1. First generate the output OTC (Source) by filling up the dialog box.

2. Copy the output OTC.

3. Add the output OTC in the target program.
By doing so, the parameters are accepted but the direction is reversed.

Method 2:
1. Create an OTC in the target program.

2. Select the name of the associated output OTC from the selection box.
In doing so the other parameters get accepted.

3. You must set the direction to "Input".

OPC Properties
You can specify the following OPC properties to the OPC.

Selection boxes Explanation

OPC Properties

OPC visible Specifies whether this connector is visible in the OPC name space.
OPC write-enabled Specifies whether an OPC Client should write to this connector.

Further information, please refer to "Setting the OPC Variable Parameters, Page 208".

158

Issue 4.2.4 m

ibaLogic-V4

Manual

8.8.3.2

Rules for creating OTCs

a
a

Q

An output OTC must be unique in the project.

Multiple input OTCs can be created for an output OTC. You can do this even within
a program, but not in the program in which the output OTC is placed.

An input OTC can have only one data source, either OPC enabled or an associated
output OTC.

If you create an output OTC with the name of the input OTC, this input OTC is no
longer write-enabled for the OPC.

An input OTC that does not have any data source can be used as a constant /
parameter.

Rename OTC

Procedure

1.
2.

Select the OTC that is to be renamed.

Open the OTC properties by means of the context menu or by double-clicking on
OTC.

Change the name of the OTC and leave the properties dialog by clicking <OK>

If the OTC already has connected targets, the "Existing OTCs" dialog box is
displayed.

In this screen, it can be determined whether all or individual connected OTCs are to
be renamed. In this manner, for example, you can assign the right name to an OTC
having an incorrect name by correcting the name.

Existing OTCs

There are several OTCs detected, having the old name. Please select the ones thatwill be
renarned, together with the current one:

OTC Mame Program Twpe Count
OTC_Temperatur Progl Source 1
[oTC_Temperatur Frog2 Target 2
[oTC_Temperatur Prog3 Target 1

D Selecti dezelect all valid entries [(o]4] l Cancel]

After quitting the dialog by clicking <OK>, all selected OTCs are renamed.

Remark

If a target is present several times in a program, the number can be seen from the
COUNT column.

Issue 4.2.4 159

Manual ibaLogic-V4

8.8.3.3 Track OTCs

Procedure
1. Click with the right mouse button on an OTC.

2. Select "Go To ->" in the context menu.
You can then see the programs in which the OTC is generated and used.

3. Click on any connection displayed.

Result
The appropriate program page is loaded and the OTC is marked.

Context menu Explanation
01. -> OTC_Temperature: Prog1 Generator
02. OTC_Temperature -> : Prog3 Consumer
(=] o a
E OTC_TEITIE‘EFWE E
»
Copy Chrl+C
¥ | Deletz Del
Select Al Chrl+a
GoTo-=> 4 01, OTC_Temperature - : Prog2
Showe OFf-task connectars Chrl+Shift+5 02, OTC_Temperature -> : Prog3

Implode To Macro

OFF kask connector properties

figure 89: Track OTCs

160 Issue 4.2.4 m

ibaLogic-V4 Manual

8.8.34

8.8.3.5

List of all OTCs
Display of all defined OTCs in the project.

Procedure
1. Position the mouse pointer at a free location in the programming field.

2. Open the context menu.

3. Select "Display Off-Task Connectors”.
The dialog box that contains the list of all OTCs defined and sorted in alphabetical

order is displayed.
Navigate within the list by entering the starting alphabet or by double clicking on an

OTC.
This displays a list of all OTCs defined in the project.

Remark

You can also call this function via the

"Function diagram - Display Off-Task Connectors" menu option or the key combination
<CtrI>+<Shift>+<S>.

Note

You can leave the dialog box open and continue working with the program. The list is
updated automatically when OTCs are created or removed. The dialog box can be
positioned wherever desired and can also be docked to the border of the programming
window.

Display
The various properties are identified in color for better orientation:
Display of the OPCs Description
T D Displays inputs and outputs that are connected
~ O RS- Displays inputs and outputs that are visible to the

OPC, write-enabled and read-enabled

Displays an input that is read-enabled and write-
enabled for the OPC

A OTC_Input_OPC_ediabe

Displays inputs and outputs that are not connected

OTC_Input_without parner OTC_Output_without parner

Issue 4.2.4 161

Manual ibaLogic-V4

8.9
8.9.1

Converters, splitters, joiners

Converter

Automatic Addition of the Data Type Conversion

In conventional CFC editors you can connect interfaces that are not of the same data
type. ibaLogic adds a converter automatically if a meaningful conversion is possible.

Note

To use detailed converters directly displaying the conversion, disable the "lconic
Display of the Converter" function in the options.

see: "Tools" - "Options" - [Editors] - [Diagram]

This automatic converter is displayed with reduced size in order to save space in the
programming field.

When you go over it with the mouse pointer, it displays the conversion hidden below it
as a tooltip.

iG]
SPLIT_LOCAL TIME_1 CONCAT_1
LOCAL TIME i
2
MO 7 —— TN OUT
SYSTEM UTC_TINE ™ D&Y 14
=== HOLR [&

145
MINUTE _r—
e e ———tE

oSt

figure 90: Data type conversion

Note

Blocks having non-typed connections get a data type only when a connector is put in
place. This data type is then accepted for all connections and remains when you
remove the last connection again.

If you wish to connect two non-typed connections a dialog box opens in which you can
select a permissible data type.

162

Issue 4.2.4 m

ibaLogic-V4

Manual

You would like to remove elements from a data structure for other evaluations. Using
conventional methods, you have to create a user-defined block in which you use
structured text to assign the structure of the output connectors to individual elements.

1. Drag a connecting line between one block input connector to a structure output

FB_ActualValue_2

iz
3
"
FB_Real 1
{ i

2

1
i 2
4

FB_ActualValue 2

of

ol

8.9.2 Splitter
IbaLogic automatically creates this block, known as splitter, for you.
Procedure
connector of a block or an OTC input.
A selection box pops up.
2. Select a structure element.
OTC_Pump
Temperature: INT
FotarySpeed: REAL
Status: INT
Error: REAL
Remarks
In this manner, you can access other structure elements.
Temperature
OTC_PUmp [s i
Emor
figure 91: Splitter
8.9.3 Joiner

If you try to connect an output connector with the input connector of a structure,
ibaLogic provides a menu where you can select one of the structure elements. Based
on this, ibaLogic adds a joiner block to whose inputs you can connect other signals.

= . = 7 Temperature
ibal ogicFB 2 I [~ RotarySpeed
i ol [T I Status

o [T Emor

figure 92: Joiner

[T OTC._Pump

Issue 4.2.4

163

Manual ibaLogic-V4

8.10 Comments
Comments are graphical elements that you can add at any free location in the
programming field. You can cover connectors. These are visible through the
transparent comments field.
The comments field has a pointer that can be docked to the function to be described.
Example

Procedure
1. Position the mouse pointer at a free location in the programming field.
2. Open the context menu.
3. Select "New... - New Comment”.

164 Issue 4.2.4 i8]

ibaLogic-V4 Manual

9.2

PMAC Runtime System

Overview of Online and Offline Modes

The following menus or icons are available in the menu for operating the runtime
system:

Q Start (Menu "Evaluation" and button in the toolbar)
O Stop (Menu "Evaluation" and button in the toolbar)
Q Store project on target ("Evaluation" menu)

O Delete stored project from target ("Evaluation" menu)

Q Disconnect (Button in the toolbar)

Q Update (Button in the toolbar)

Start Runtime System
In contrast to conventional automation systems, the steps of "Compilation" and
"Loading" take place automatically in the background.

Procedure
1. Click on the <Start> button in the toolbar.

&% ibalogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File Edit WView Evalustion Function Disgram Tools Help

ﬂ Mew + 23] Open ES&:E v Y Zoom In

2. Confirm the "Start Evaluation..." dialog with "Yes".

Note

This request can be disabled in the ibaLogic options to start the evaluation in the
development and test environment by pressing the <Start> button or F5.

To disable the query, open the options with "Tools"->"Options" and enable the
"Program: Start evaluation" option under [General]->[Messages]->[Confirmations].

Result
The following actions are performed:

U The project is compiled.
The project is transferred to the PMAC.
Program execution commences.

The evaluation time is displayed in the program window toolbar.

0O 0 0 O

All value pads are displayed.

Issue 4.2.4 165

Manual ibaLogic-V4

U The value pads in the visible region are provided with current values.
U The background color of the programming field in the client changes to pink.

Q The program is now in online mode.

- == I— 43 p[T Tempersturs
ibalogicF O
= 0.655 ... a7 RotarySpead =
b i ol [T} 43 ' 2 e] 43 e 43 |[TOTC Pump
o2 [310.655...

0.0 Error

figure 93: Online mode

Errors during compilation, loading, etc. are displayed in the event window. By default,
this is located below the programming field. It can, however, be concealed or placed at
any position desired and docked there.

Tip
A special highlight of ibalLogic is the fact that you can (almost) carry out the entire
programming in the online mode.
Exceptions:
Q Configuring the platform
d Configuring the I/Os
U Importing programs / blocks / data types
Q Configuring the DAT_FILE_WRITE block

Another feature:

You can end the client in the online mode without stopping the PMAC. When you
restart the client, it connects with the PMAC immediately in the online mode.

This is particularly useful when the PMAC is running on another platform (another PC
or PADU-S-IT). You can then shut down the ibaLogic computer and, in fact, remove it,
while the PMAC continues to run. After rebooting and starting the server and client, the
client reconnects automatically with the PMAC running in the online mode.

9.3 Stop the Runtime system
Procedure
1. Click on the <Stop> button in the toolbar.
£ ibalogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace
File Edit View Evaluation Function Diagram Tools Help
ﬂNew ~ £ Open - DisconnectEStoE*fl Zoom In 'i Zo
2. Confirm the "Stop Evaluation..." dialog with "Yes".
166 Issue 4.2.4 i8]

ibaLogic-V4 Manual

9.4

9.4.1

Note

This request can be disabled in the ibalLogic options to stop the evaluation in the
development and test environment by pressing the <Stop> button or <Shift>+<F5>.

To disable the request, open the options with "Tools"->"Options" and enable the
"Program: Stop evaluation" option under [General]->[Messages]->[Confirmations].

Result
The following actions are performed with <Stop>:

U Program execution (PMAC) terminates.
4 The background color of the programming field in the client changes to gray.
U The value pads are concealed.

U The program is now in the offline mode.

I' Tempearaturs
[~ RotarySpesd A
ol @ l e s | OTC_PUmp

Emor

figure 94: Offline mode

Runtime System — Autostart

Save program on the PMAC

If you wish to start the platform with an executable program, this program must first be
saved in the PMAC.

Prerequisite
Q ibaLogic is in the online mode.

U Autostart is enabled.

Procedure
2 Select "Evaluation — Store Project on Target" in the main menu.

ES ibal.ogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File Edit Wiew Function Diagram ~ Tools Help
ﬂNew - S Open Y Zoom 1

Workzpace Explorer ‘ o8 SUTENTE ewProj

Ny ECview || L. | & Store Project on Target

= QE Workspace '
—Af, NewProject [

Result
The project is saved on the target. A file is generated physically. The PMAC will find this
file on the platform on startup and execute it.

For more information, please see "Activate Autostart Server, Page 47"

Issue 4.2.4 167

Manual ibaLogic-V4

9.4.2

Note

Please note that any subsequent program modification must be saved explicitly in the
PMAC.

In order to prevent automatic startup of the PMAC, you can first delete the platform
memory or modify the autostart options.

Delete Program on the PMAC

This deletes the image file generated earlier physically with the command "Store
Project on Target".

Procedure
2 Select "Evaluation - Delete stored project from target" in the main menu.

&S ibalogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File Edit Wiew Function Diagram Tools Help

ﬂ Mew = 3 Open L Zoom Ir

‘Workzpace Explarer ’ =top Shithes _ewF'rojE

S IEC view || [| Store Project on Target

= I]E Warkspace it Delete stored project from target
=-4% NewProject |

Result
The PMAC memory, i. e. the image file created is deleted.

168

Issue 4.2.4 @

ibaLogic-V4 Manual

9.5

Connect/disconnect
Disconnect is used when - you have several program modifications to be made one
after another - without stopping the program or compiling the steps one by one.

Example
You would like to expand a structure data type that is used many times in the program.

A CAUTION
Risk of effective SWITCH/SLIDER in the Disconnect state!

Any SWITCH /SLIDER existing at the time of Disconnect continue to be active on the
running PMAC in order to have an influence on the system despite this. This behavior
permits operations on the running PMAC despite DISCONNECT.

If any of these SWITCHES or SLIDERS is removed and added again with the same
name, this becomes effective again immediately on the running PMAC.

If you delete an FB or MB in the Disconnect state and add it again with the same
name, identical inputs and outputs can be visualized again immediately. The values
relate to the block running currently in the PMAC and not to the block that has been
created afresh. The block that has been created afresh can, for example, have totally
different contents. The new layout is accepted only after compiling and loading the
program.

Procedure
< Click on button <Disconnect> in the toolbar.

£F ibalogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File Edit View Evaluation FunctionDiagram Tools Help

. New ~ C3lOpen | vIIESWnE ‘Stop \ '-Q Zoom In ‘:l Zo

The following actions are performed thereafter:
U Program execution (PMAC) is not terminated, but instead, continues unaffected.

Q The background color of the programming window in the client changes to green.

ihalogicFB 1 I~ Temperatur

... JTT Drehzahl =
Sery = | 43 |[OTC_Pumpe

0250535] —

The value pads continue to be displayed and updated.
The <Disconnect> button is changed to <Connect>.

The <Update> button is enabled.

(Y I Sy Iy

You can now replace the old type one by one with the new one in all blocks and
OTCs in which this data type is used. The modifications, as you do this, are neither
compiled nor loaded in the PMAC.

Issue 4.2.4 169

Manual ibaLogic-V4

2 After completing your modifications, you can now specifically compile and load
them in the PMAC. You can do this either in one shot (complete update) or in
separate steps. Select <Update> in the toolbar.

EE ibal.ogic Client 4.2.1 [4FOC3CTEFB5F4E1] - NewWorkspace

File Edit Yiew Evaluation Function Diagram Tools Help

m Mew = 3] Open § o Update - | Conneck jStop G:l, Zoom In

Workspace Explorer Update (complete) h
R ECyiew | L. | &5 3 @ Compile current changes
= IJE Woarkspace 'Newworksp Download {without compile)

In doing so, you do not quit the Disconnect mode.

< You can exit the Disconnect mode by clicking on <Connect>.

Result
As a result, all changes get compiled and are loaded in the PMAC.

170

Issue 4.2.4 m

ibaLogic-V4 Manual

10

Platforms

Before you start configuring the interfaces to the peripherals or to other systems, you
have to have to set up the base hardware on which the ibalLogic runtime system
(PMAC) needs to run.

At present, there are two device classes available for the platform:

WinXP

The PMAC runs on a Windows PC on which the other ibaLogic components are
running.
For more information, please refer to "Operating and Processing Modes, Page 31".

The link to decentralized peripherals and to other systems is established using PCI
cards here.

44— | Discrete I10s

ibalogic-V4

figure 95: Peripheral interface Windows PC

PADU-S-IT

The PMAC runs on an ibaPADU-S-IT station. All other ibaLogic components are always
located on one or multiple Windows PCs.

Only the local I/O components (peripheral modules) are available to the PMAC on the
ibaPADU-S-IT. There is a bi-directional FO connections and a network connection for
TCP/IP coupling available for decentralized peripherals and external systems.

ibaLogic-V4

figure 96: Peripheral interface of the PADU-S-IT

Issue 4.2.4 171

Manual ibaLogic-V4

10.1

After calling the ibalLogic-V4 Client for the first time, the local Windows PC, that is,
device class "WinXP" is preset as the platform.

Configuring the Platform

The dialog box for configuring the platform is available under "Tools" in the menu bar of
the Client's ibalLogic.

Note

The platforms are created specifically for each project. All projects of the workspace
and the platforms configured in them are available in the "Platform
Configuration" dialog box.

Prerequisite
You have opened a project.

Procedure
> Select "Tools - Platform Configuration" in the menu.

E¥ ibalogic Client 4.2.1 [4FOC3C7EFBSF4E1] - NewWorkspace

File Edit Wiew Evaluation Function Diagram Help

ﬁ Mew = =3 Open iStart ste = Dist {9 | IO Configurator
‘Workspace Explarer Program [©*
‘s‘ 1EC view || [@ g¢ |— Platfarm Configuration
= QE ‘Workspace 'Newworkspace' {4 9 ExnofSEonaUration
—ﬂ MewProject] Q Options. ..
w6 Corfinuration

Alternatively:
open the list next to "Current Platform" in the toolbar and select <Add Platform> or
<Edit Platform>.

172

Issue 4.2.4 m

ibaLogic-V4

Manual

2 Click in the dialog box under the project name on <Add Platform> or on the

appropriate platform in order to create a platform or to configure it.

Configure platforms

Device name Device class Huost Gl

__ Project_Datentypen

<Mew item <Mew e <Mew iem>

Default Wik Incalhost 23042

S_IT_Reg_Matd, PADU-ST 192.168.23 56:23042
__ Projekt_Ethik

<Mew item <Mew iem <Mew iem>

Default] Wik Incalhost 23042

<Mew itam <Mew ibam> <Mew ibam>

Defoul? WinkP (ocalhost 23042 L
Color Explanation

Green Is the active system.

Light gray Creation of a new platform.
Black Other platforms available.

2 Click on the <Edit> button. The "Edit Platform Configuration" dialog box is

displayed.

Edit platform configuration
Devicenarne: HewDevicel)
Deviceclass:
Host/F:
Pt

Search PMAC [ok J[cancel |

2 Enter a device name or accept the settings specified.

Within the workspace, the name must be unique.

< Select the device class WinXP or PADU-S-IT.
< Enter the host IP.

= |f you have selected the WinXP device class, enter "localhost" or "127.0.0.1"
when the PMAC runs on the computer or on the server.

= If the PMAC is located on another computer within the network, enter the host
name or the IP address of this computer.

= |f you have set PADU-S-IT as the device class, enter the host name or the IP
address of the ibaPADU-S-IT device on which the PMAC should run.

< Confirm your inputs by clicking on the <OK> button.

<2 Exit the dialog box with <Close>.

Issue 4.2.4

173

Manual ibaLogic-V4

10.2

Selecting the Platform

The platform set currently is displayed in the toolbar of the ibaLogic-V4 Client. You can
use the selection box to switch to another platform.

Important Note

Please note that the platform is always set for the active project and not for the project
being edited.

Procedure
1. Click on the selection box to switch the platform.

2. Select one of the platforms already configured.

ES ibal ogic Client 4.2.1 [4FOC3CTEFB5F4E1] - NewWorkspace
File Edit View Ewaluation Function Diagram Tools Help

ﬂ Mew ~ 3 Open ‘Start it - i T4 Zoom In ZL Zoom Gub 100% - & = Current PlatForm:

ek [

Default
IT_Peqg_Motd

Program Designer - MewProject] {not active)

‘Workspace Explorer
7 T

Important Note
Please note that the I/O configuration depends on the platform.
After setting up the platform, you have to update the I/O configuration.

Select the "Tools — I/0O Configurator" button <Update Hardware >.

174

Issue 4.2.4 m

ibaLogic-V4

Manual

11

10 Configuration

The 10 Configurator is the centralized dialog in which you can make all configuration
settings relating to the input and output signals as well as certain interfaces.

Note

Exceptions are all those interfaces that are available as function blocks, e.g.
TCPIP_SENDRECYV block or the in-built OPC interface.

2 Open the 10 Configurator using the "Tools - IO Configurator".

() Configurator @
[FOEFOD Hardware Configuration | Assign Signals
FRBRL] General Satiings
Lzeon 1
FOESD00 Intermupt Souce; | FOBFDD v
FOETDCOO Timebase: i s ms [Enable Watchdag ms
SST_Masterl0
RFMO0 [[] Farce Driver Restart (@ SoftPLC
FBo00 () Measurement
TCRIP_OUT Enab\e. Turbo Mode
GLOBALVAR Card Settings
FobF PCI O
Intermupt Mode: taster Mode Intemnal b
[#] Enabled
Wariable Cycle Time
Link Settings
Enable Input Output Signale Buffered Async
Link0 Integer v | |Integer v B B O
Link1 Integer w | |Integer ¥ B 5 O
Link2 Integer w | |Integer ¥ # 5 O
Link2 Integer w | |Integer ¥ # & O
Update Hardware ok [eppb][Cancel

The 10 Configurator dialog screen is divided into 3 sections:
Q Input / output resources available
Q Hardware-Configuration

U Signal assignment

Input / output resources available

All hardware and software interfaces detected and supported by the system are
displayed in a tree structure on the left side of the dialog screen.

Hardware-Configuration

This is where you can configure special settings for the entire system and for individual
cards.

Assign signals

You can work with self-defined and meaningful input and output names in ibalLogic
(virtual inputs and outputs). These virtual signals are assigned with the help of signal
assignment to the physical inputs and outputs. The virtual signals are divided in groups.

Issue 4.2.4 175

Manual ibaLogic-V4

11.1

Resources

The I/O configurator accepts the 1/O configuration associated with the active project
when it is opened.

Note

The 1/O configuration is not saved in the database, but instead, in two XML files in the
path, ".. \ibaLogic v4\Server\HwMappings". Hence, it is possible to edit the project
regardless of the hardware available.

The I/O configuration files are saved during database backup in ZIP files and are
reloaded when the database is restored so that after transporting the projects, even
the original 1/0 configuration is available.

When saving the database backup in BAK files, the I/O configuration is not saved.

<Update Hardware> button:

By clicking on the <Update Hardware> button, the hardware that is available to the
computer on which the PMAC is running is accepted. This includes the PCI cards
supported on the Windows PC platform (see "Hardware Resources, Page 177"). For
the ibaPADU-S-IT platform, these are the peripheral modules available there.

Important Note

The platform must be configured prior to editing the I/O configuration, since the
settings of the I/O configurator are lost when you switch the platform!

Note

The number of I/O signals permissible depends on the license purchased (Dongle).

176

Issue 4.2.4 m

ibaLogic-V4 Manual

Tree structure

Prerequisite

U You have activated the corresponding link in the hardware configuration and
accepted the configuration using the <Accept> button at the lower border of the
dialog box.

Procedure

2 You can open the tree structure right up to each individual signal by clicking on the
+/- character in front of the names.

The following hierarchy levels are displayed:

Interface &> module - inputs/outputs - signals

Interface: Name and index for the card types
Modules: Group according to the physical division,
depending on the type of card.
Inputs / Module may have only inputs, only outputs or both
Outputs:
Signals: The names of the hardware signals are formed from the

module name, direction, data type and serial number.

I0 Configurator

| =2 FOBFOD Al Hardware Configuration | Azzign Signals l
F FobFBufferdOMO0 | ?D:HmpT =
=B FobFOOMOD 19 5 Outputs
P Inputs i A
= -*4 Outputs
“ FobFO0MO00uténaln
. FobFOOMODDutanal

figure 97: Assign signals

@ Issue 4.2.4 177

Manual

ibaLogic-V4

111 Hardware Resources

ibaLogic supports the following interfaces:

WinXP platform and PCI cards

Interface Cards Links Protocol
(Connections)
FOBFnn * ibaFOB-io-S 1 FOC link ibaNet with 2 and 3
ibaFOB-4i-S 4 FOC links Mbit
ibaFOB-40-S (simplex/duplex)
ibaFOB-2io-X 2 FOC links ibaNet with 3.3 and
ibaFOB-4i-X 4 FOC links 32 Mbit (32 Mbit
ibaFOB-40-X (simplex/duplex) only for receive)
FOBDIi ibaFOB-2io-D 2 FOC links ibaNet with 2, 3.3
ibaFOB-4io-D 4 FOC links and 32 Mbit and
ibaFOB-40-D (simplex/duplex) DMA
FOBSDnn ibaFOB-SD 1 FOC link SIMADYN D
duplex (ST)
FOBTDCnn ibaFOB-TDC 1 FOC link SIMATIC TDC
duplex (SC)
L2Bnn ibaCOM-L2B 4/8 4 slaves Profibus DP Slaves
ibaCOM-L2B 8/8 8 slaves
SST_Masternn SST-PCB3 max. 125 slaves Profibus DP Master
RFMnn VMIC-5565 1 duplex FOC Reflective Memory
VMIC-5575 1 coaxial

figure 98: WinXP platform

nn = Card numbering 00 to 03 (max. 4 cards of one type are allowed)

ii = Card numbering 00 to 07 (max. 8 cards of type FOB-D are allowed).

PADU-S-IT platform
Interface
PADU-S-IT

Peripherals

Local peripherals, i. e. the interface modules on the PADU-S
module rack or frame. Please refer to the PADU-S modules for
this purpose.

Other Documentation - PADU-S-IT platform

Please look up the ibaPADU-S-IT manual for information on this.

* Cards for this interface are available only for old systems.
178 Issue 4.2.4 i8]

ibaLogic-V4

Manual

11.1.2

11.1.3

Software Resources

ibaLogic supports the following protocols that are based on Ethernet:

Display Protocol
TCPIP_OUT | TCP/IP protocol ibaLogic to PDA:
WinXP class:
max. 16 telegrams for every 32 real values and 32 binary values
PADU-S-IT class:
max. 16 telegrams for every 32 real values and 32 binary values
Note

Only outputs are available.

Global System Variables

The following global system variables are provided:

Interface
GLOBALVAR

Variables
Global input variables:

LAST_DRIVER_ERROR
Last error occurred on the driver displayed as hex code.

WATCHDOG_BITE

FALSE by default. If this value becomes TRUE, the configured
watchdog of ibalLogic has responded and switched off the outputs of
the cards.

For more information on "Watchdog", please refer to "General
Settings, Page 180".

SYSTEM_UTC_TIME
Current system time in UTC format (UniversalTimeCoordinated).

DONGLE_NUMBER
Dongle number of the iba dongle plugged in on the PC or the serial
number of the PADU-S-IT.

ACQ_RESTART_COUNT
Counter for internal driver restart. This is used to detect system
overloads in the "Buffered Mode"

Issue 4.2.4 179

Manual ibaLogic-V4

11.2 Hardware Configuration
The hardware configuration dialog screen is called via the "Hardware Configuration”
tab.
There are 3 sections available in the hardware configuration in which you can configure
the following settings.
Q General Settings for ibalLogic
Q Card Settings
Q Link (Connection) Settings
Note
You can make modifications only if the evaluation has not yet been started (Gray
background in the design area).
11.21 General Settings
The general settings are applicable to the ibalLogic runtime system and to all interface
cards.
Hardware Configuration | Assign Signals_
General Settings_
Intermupt Source: | FOBFOO “
Timebaze: 1 | ms [] Enable ‘Watchdog (200 ¥ | ms
[] Force Diiver Festart (%) SoftPLC
[] Enable Turbo Mode) Measurement
figure 99: General Settings
Interrupt source
The iba modules available are displayed in this list field or selection list. Select any
module from this list that should work as the interrupt source with respect to the PCI
bus.
If there is no 1/0 card in the system, ibalLogic clock uses a clock and the field is empty.
Only PADU-S-IT is provided as an option under the PADU-S-IT platform.
Time base
The time base is the smallest cycle time that can be used. Please note that the
configurable task intervals cannot be less than this time base.
Activate Turbo Mode
The turbo mode can be activated if a multiprocessor PC is being used. The spare
performance capacity of the system can be enhanced considerably with this, since one
of the processors is responsible exclusively for the execution of the PMAC and the
other one handles the customary Windows management. This should be used
particularly for control and regulation functions (Software PLC).
Detailed description see "Time behavior, Page 230".
180 Issue 4.2.4 i8]

ibaLogic-V4 Manual

11.2.2

Soft PLC

This mode is suitable for control and regulation functions. This ensures in ibalLogic that
only the latest signal states are processed. In contrast to the measurement mode, it is
not decisive if samples are lost. Current data from the latest I/O transfer cycle are used
for the evaluations.

Detailed description see "Time behavior, Page 230".

Measurement

This mode ensures that ibaLogic does not lose any input sample. This is also true
when individual tasks within ibaLogic need to be superseded. The runtime system of
ibaLogic ensures that the data are made available equidistantly in the task interval
configured. If tasks get superseded, the system makes up for the cycles.

Detailed description see "Time behavior, Page 230".

Activate Watchdog

When this function is activated, a timer is started up in the cards available, and this
timer is triggered by ibaLogic when there is a write operation at the outputs. If there is
no write command (= trigger) from ibalLogic within the time configured, the card
automatically sets all outputs to 0.

Since ibalogic writes to the outputs cyclically, any trigger of the watchdog points to an
application that has paused or is overloaded (e.g. b programmed endless loop).

Force Driver Restart

This function is particularly important for SST cards and reflective memory cards.
These cards are also reset with the driver restart and, with it, the modified external
configuration is accepted.Setting this option leads to restart with <OK>. This option is
again reset automatically.

Card Settings

Please mark the appropriate interface in the tree structure on the left for the settings.
Only those settings are described here that are applicable to (almost) all cards.

U Interrupt mode
This field is provided only for iba cards.
The following modes are available for selection:

Q Master Mode Internal:
Master Mode Internal should be set for only one card. This uses the internal timer to
generate a synchronization signal that is distributed via a flat ribbon cable to the
other cards.

Q Master Mode External:
In contrast to Master Mode Internal, the synchronization signal is not generated in
the card, but instead, derived from the cycle of the FOC telegram incoming at LinkO.
This mode is meaningful only if ibaLogic needs to be synchronized with an external
cycle, e. g. with variable interrupt time in buffered mode (e. g. flatness
measurement or for bus-synchronous measurement with the Simolink monitor. For
further information, please refer to "Buffered Mode, Page 192".

Issue 4.2.4 181

Manual ibaLogic-V4

O Slave Mode:
This mode must be set for all other cards.

Note

Select this as the interrupt master if there is a card of type FOBSD or FOBTDC in your
configuration. Otherwise, select one from the FOB-X or FOB-D type of cards. If neither
of these cards is present, you can use the FOB-S or L2B card.

Q Enabled
You can use only cards that have been enabled.

A card must be deactivated if an ibaPDA Server is running on the same computer that
uses this card. A card cannot be used by ibalLogic and ibaPDA simultaneously.

Other settings are specific to each card and described in section "PCl Interfaces
(Windows PC), Page 190".

11.3 Signal assignment
In order to use the physical inputs and outputs, you must assign them to the virtual
signals in the program.
There are two methods for assigning signals:
Q from the hardware signal to the program signal (seen from the hardware).
Q from the program signal to the hardware signal (seen from the program).
It is also possible to use a mixed method between these two basic methods.

11.3.1 Method as seen from the hardware
At the start of programming, you already know the external interfaces, e.g. the
assignment of the FOC telegrams or that of the Profibus slaves. From these physical
signals you generate virtual signals that you can use subsequently in the program.
You can accept the names generated automatically or assign your own base names.
The direction tag, type and index are added automatically. Finally, each signal name
can be changed separately.
After acceptance, the virtual signals are visible in the navigation area under "Inputs -
Outputs". Here, too, you can modify the signal names provided that they are not yet
used in the program, i.e. dragged from the navigation area to the borders of the design
area.

182 Issue 4.2.4 i8]

ibaLogic-V4 Manual

11.3.1.1 Example: Assignment of all signals of a module of an ibaFOB-io-S

card
The FOB card is listed, among others, on the left side.

The inputs and outputs are not yet assigned in the "Assign Signals" tab.

10 Configurator

= FOEFOD | Hardware Ennfiguratinn| Asgzign Signals L
B FobFEuifer0MO0 = [I= [nputs
- B FobFOOMOD = 03 outputs
B FobFEuiferd0M01
B FobFOOMOT
= L2B00
= FOBSDOO
= FOBTDCOO
& B8 FOBDOO
% B8 TCPIP_OUT
= GLOBALVAR

figure 100: Assignment of signals of the ibaFOB-io-S card

Procedure

1. Open the tree of the FOB card on the left side.
All activated links of the card and their designations are displayed.

You can assign the entire FOBFOOMOO module (equivalent to link 0 on the FOB
card).

2. Drag the FOBFOOMOO module and drop it on the right side on the inputs or outputs.
The "Group Properties" dialog box is displayed.

Group Properties for Dragging, B@

Group Properties
il
Group Mame | FobFOOMOD |

Directions ilnputs and Outputs |

Signal Froperties
(%) Keep onginal name

() Create new name

Base Mame J |

Direction Tag

Type Tag
Sample I FobFOOrMO0Inénal |

k. Cancel

Remark

ibaLogic creates a group with the group name under the inputs and forms a virtual
name for each hardware signal. You can either leave the generation of the names
entirely to ibaLogic or specify them yourself.

Issue 4.2.4 183

Manual

ibaLogic-V4

During the generation, the composition of the current signal name is displayed. In the
example given above, the name "FOBFOOMOOInAna01" is composed as follows:

FOBFOOMOO
In

Ana

01

Base name (same as the group name)

Direction tag
Type number

Serial number

Depending on the direction that you have chosen in the selection box, all signals of this

module are created in the group displayed under inputs and / or outputs.

Result

The assignment leads to the following result:

The virtual signal names are displayed to the left from the arrow and the hardware
signal names to the right. The group name is identical to the physical module name.

1/0 Configurator

=] FORFOO
FobFEBufferd0k00
FobFOOMO0
FobFBufferd0b 01

®

FobFEBuffer0k02

| Hardware Cunfiguraliun Aszign Signals '_

= [[El Inputs
® 3 Globahariables

=] Analog

[=]
[=]
[=]

& B FobFDIMOT
[=]
B FobFOOMOZ
[=]
[=]

FobFOOMO3

S5T_Master0D
RFMOD
FOBDOO
TCRIP_OUT
GLOBALYAR

FobFEBuffer0k02

figure 101: Assign signals

b FobFOO0M00lndnallllnt) -» FobFOOMOIndnal
b FobFOO0M00Indnall (Int) -» FobFOOMOndnall
Hp FobFOOMO0Inénal2(Int) -» FobFOOMOndnal2
Hp FobFOOM00IndnalInt) -» FobFOIMOIndnal3
Hp FobFOOM00Indnald{lnt) -» FobFOOMODIndnald
*p FobFOO0M00IndnalS(lnt) -» FobFOOMOIndnals
b FobFOO0M00IndnalE{lnt) -» FobFOOMODIndnals
Hp FobFOOM00Indnal7(Int) -» FobFOOMO ndnal?
*p FobFOO0M00IndnalBInt) -» FobFOIMOIndna3
*p FobFOOM00Indnal3(int) -» FobFOIMOndna0d
*p FobFOOMO0Indnallint) -» FobFOOMO0Indna10
b FobFOOMO0Indnal(Int) -» FobFOOMO0Indna11
b FobFOOMO0Indnal Z(lnt) -» FobFOIMO0InAna12

184

Issue 4.2.4

ibaLogic-V4 Manual

11.3.1.2 Example: Assignment of individual signals of an ibaFOB-4i-S or
ibaFOB-40-S card

If you need only a few signals of a module in the program, you can assign only these
signals as required.

Procedure

Add group
1. Open the context menu by clicking the right mouse button.

10 Configurator,

H= B8 FOBFOOD Hardware Configuration: Agsign Signals I
B FobFBufferOMO0 ?DEI e
=B FobFOOMOD T E— Add Group
. = |
; Ea QE::;;S g % Export Configuration ‘
B FobFEufferDOMOT m 0= FobFOOMOD
=B FobFOOMo e DEI Outputs
=-B8 L2800 =
- B8 FOBSDOO
=-§9 FOBTDCOD

@ B9 FOBDOO
w88 TCRIP_OUT
w0 B9 GLOBALVAR

2. Select the "Add Group" menu item, assign a group name and leave the "Setting the
Group Name" dialog box by clicking OK.

3. Open the signal tree until you can see the individual signals of the module you want
to use.

4. Add individual signals to the group defined earlier by drag and drop.

/0 Configurator

= FOBFOO ’_;_ Hardware ConfigurationJ ..&Sﬁi-g.jngi.g.]nal-s ,
B FobFBufferdiMOn B e i

-
= FabFOOMOD ® [Globalariables

53

Lﬂ ;& Inputs @ (3 FabFoamMon

= _* Cutputs lic] Group 1
s FobFOOMOOOut:na00 2 I3 Outputs

™\ FobFOOMO00ut&nal [Globaléarisbles
"\ FobFOOMODOuksnal2 & [= FobFOOMOD
s FobFOOMO0OuSna03 o =

“\y FobFOOMONOuSnald -

™\ FobFOOMO00ukanals
"\ FobFOOMODOukSnals
™\ FobFOOMOO0ukanal?
"\ FobFOOMODOukSnals
™\ FobFOOMOOOukanald
"\ FobFOOMODOuksnal 0
™\ FobFOOMOO0utana11
"\ FobFOOMODOuksnal2
™\ FobFOOMOOOukanal 3
"\ FobFOOMODOuksnal 4
™\ FobFOOMOOOukanal5

* 3 FobFOOMODDutarall_D(lnt) -+ FobFOOMODOutERa00

Result
Individual signals are assigned to the group.

m Issue 4.2.4 185

Manual ibaLogic-V4

11.3.1.3 Change Signal and Group Names

You can change the names of the virtual signals one by one after the assignment.

Procedure

1. You can change the group name by clicking on the right mouse button. Select the
"Properties" menu item.

2. You can modify the signal name by double clicking on it. You can also add a
description for the signal. The description is displayed in the program as a tooltip.

3. Confirm the settings with <Accept> or with <OK>.

11.3.2 Procedure as seen from the program

At the start of programming the external interface are not yet known, but you would like
to commence with programming and find out the inputs and outputs that you need.

1. Define the inputs and outputs, groups and signals in the navigation area. Please
see the description in "Configure Inputs and Outputs, Page 80" for this purpose.

2. As soon as you know the physical interfaces at which the 10 Signals are available,
you can switch to the 10 Configurator and assign these signals to the physical
interfaces.

11.3.2.1 Example: Signals of an ibaFOB-4io-S card (complete module)
You assign the physical signals of linkO of the FOB card.

Prerequisite

You have defined a group "MotorA" and under this, the input
signals "MotorA_N_Ist(Int)", "MotorA_Ta(Int)" and "MotorA_Status(Int)" in the program
(in the navigation area of the inputs and outputs).

Inputz-Outputs Program Designer
*for ffre curantl selackad platformt

= 0= Inputs [G
7 [0 Globalvariables
= 0= Motara,
= 0= Analog
B Motord_ N_stnt)
B Motors_Talnt A
ft} kotard_Statuz(lnt

& 02 MotarB
: DE' Dutputs Motora_Staus [T

Motars_Taps

figure 102: "Inputs — Outputs”

186 Issue 4.2.4 @

ibaLogic-V4

Manual

Procedure
1. Open the I/O configurator.

2. Update the hardware using the <Update Hardware> button.

3. Activate linkO on the FOB card.

Please make sure that the data type of the link matches that of the signals already

defined.

You can see the signals defined in the project in the "Assign Signals" tab.

4. Select a hardware signal from the tree structure on the left.

Drag & drop it on the signal.

You have, thus, assigned the virtual signal to a physical signal.

If0 Configurator

=188 FOBFO0
#- B FobFEufferDOMO0
=B FobFOOMOD
= Inputs

i+ FobFOOMOO_Statuz0ut
i+ FobFOOMO0_Statuzn
4+ FobFOOMO0Indna00
™+ FobFO0MO0Indnal
W FobF 00k 00l nd nal2
4+ FobFOOMO0Intna03
4+ FobFOOMO0Indna04
™+ FobFOOMO0Intna05

Result

.Hardware Configuration | Agsigh Signals

= [Inputs
= 3 Glabal/ ariables
= 03 Motars,
= [Analog
B Matard_N_lst]
B Matard_Tallnt)
P Motard_Status(ing
3 MotarE
= 0= Oukputs

You can also see the assignment in the design area.

ES ibalogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File Edit “iew Ewaluation Function Diagram Tools Help
mNew - 3 Open |lStart date = Disc il 5t - |@l200m In QZoom ouk 100%
Inputs-Outputs Frogram Designer
*for fna cuwently seleched plafonr J |
= 0= Inputs Q
@ [Glabalvariables
e =
= (= Analog
f& rdotord_M_lst{int) -> FobFOOROOInARa02
fb hdatord_Taflnt) -> FabFO0RA00InARa04 Motord, N_st=
f’ hdatord_Statuz(lng ——
o MotorA_Ta
0= mMotars i
0= Qutputs Motord_Stats =
figure 103: Assign signals
Issue 4.2.4 187

Manual ibaLogic-V4

11.3.3

Modify Signal Assignment

You can modify existing assignments. Multiple methods are possible.

Method 1

2 Simply drag another hardware signal and drop it on a virtual signal that has already
been assigned.
The assignment gets modified by doing this.

Method 2
< Drag a hardware signal that is already in use and drop it on a virtual signal.
An information message pops up.

2 Acknowledge the information message, after which the assignment gets modified
and the link to the old signal is deleted.

Note

You can assign only one virtual signal to a hardware signal.

11.3.4 Using externally defined signal names
Using the export / import function, you can also use signal names that are available in
external documents, e. g. in a spreadsheet program.
Procedure
o Specify the hardware signals.
2 Export the I/0O configuration using the context menu of the inputs and outputs.
10 Configurator
| = B3 FOBFOO 1 Hardware Configuration | .Assign Signals
|E E@ L2BE|D | o) D::_.]w
[+ B8 FOBSDOD .:; I o
- g8 FOBTDCON @l=g | AddGouw
=-B8 FOBDOO Export Configuration
=88 TCRIP_OUT '
- BB GLOBALWAR
2 Select "Export Configuration” in the menu. A dialog box is displayed.
Export To CSV
Select the export file for:
Export File i_E'.\.I;-.'-rnglammé{l‘l‘nla“\‘l‘hal‘né‘lc vd\Selvar\dh\Ennhgura |:]
[ak] [Cancel]
2 Specify the target path and file name.
188 Issue 4.2.4 i8]

ibaLogic-V4 Manual

Result
You get a CSYV file that you can open using an ASCII editor or a spreadsheet program.

B Configuration2.csy - Notepad

File Edit Format Wiew Help

kdresse; Typ; Inout;Gruppe; Symbol; Kommentar
FobFOOMOOTnARa0O; INT; Input;;;
FobFOOMOOInAnaCll; INT; Input;;;
FObFOOMOOINANACZ; INT; Input; MotorA; Mot ora_N_AcCT;
FobFOOMOOINANACO3; INT; Input;;MotorA;Motora_Ta; """
FobFOOMOOInAanald ; INT; Input;;;
FobFOOMOOINANAQS; INT; INpUT;;;

figure 104: CSV file in ASCII editor (Notepad)

O Important Note
You can see the hardware signals defined in the columns, Address, Type and InOut.

Do not modify these.

You can edit the virtual signals under the columns, Group, Symbol and Comments, or
use copy & paste to accept them from the external document.
Please note that the names in the "Symbol" column conform to the IEC standard.

o Exit the 10 Configurator to import the data.

2 Select "File - Import - Signal mapping" from the main menu.

m Issue 4.2.4 189

Manual ibaLogic-V4

11.4

11.4.1

11.4.1.1

PCI Interfaces (Windows PC)

This section describes the special settings of the interface cards.

For more information please refer to "Hardware Resources, Page 177",

Connection to the "iba World"

The following PCIl cards are available for FOC connection to decentralized iba
peripherals (PADUs) and to the iba system interface cards. You will find them in the
resource tree under the FOBFnn or FOBDnn interface type.

Q ibaFOB-S° (FOC link, 3 Mbit Protocol)

Q ibaFOB-X°¢ (FOC link, 32 Mbit Protocol)

Q ibaFOB-D (FOC link, 2 Mbit / 3 Mbit / 5 Mbit / 32 Mbit Protocol)

For each type of card, there are variants for the number of links being 1, 2 or 4 for the
input and output.

Card Settings

When you mark the FOBFnn or FOBDnn interface in the tree on the left, the associated
card settings are displayed on the right.

U Interrupt mode, see "Hardware Resources, Page 177"
U Enabled, see "Hardware Resources, Page 177"

Q Variable cycle time

Card Settings
FobF PCI O

Intemupt Maode: Mazter Mode Intemal W

Enabled
[] “ariable Cycle Time

figure 105: Card settings

Check box Explanation

Enabled You can use only cards that have been enabled.

Variable cycle time | This mode has not been realized.

® Cards for this interface are available only for old systems.
® Cards for this interface are available only for old systems.

190

Issue 4.2.4 m

ibaLogic-V4 Manual

11.4.1.2 Link Settings

The channel configurations are displayed in the section on "Link settings". The number
of channels varies depending on the variant of the ibaFOB-io card used.

Settings Explanation
Enable You can enable or disable individual links here.
Input format Set the data format for the incoming optical fiber cable

telegrams here. Select INTEGER, REAL or S5REAL depending
on the devices connected. If you are using the FOB-X or the
FOB-D card, other data formats for the 32 Mbit FOC protocol
are provided as options.

Lirk Settings

Enable Input Output Signals Buffered Async

| .l
O d

4

Link0 Integer “ | |lnteger W (B4

4

Link1 Real | Integer w| (B4
55 Real g)
: 32MBit Integer 1000p:
Link2 32MBit Real 1000ps
32MBit Integer 100ps
Link3 32mMBit Real 100ps
32MBit [nteger B0ps

figure 106: Link settings

The data type must match the type or the setting configured on the device connected.

Device Protocol Data type/telegram type

ibaPADU-8 3 Mbit Integer

ibaNet750

SIMATIC TDC/LO6 32 Mbit 32 Mbit Real 100 ps

ibaLink-SM-64-i-o 3 Mbit Integer, Real or S5Real, depending on
the switch setting on the module.

ibaLink-SM-64-SD16 3 Mbit Integer or Real, depending on the setting

ibaLink-SM-128V-i-2 on the module

ibaBM-DPM-S-64

iba-PADU-S-IT 32 Mbit depending on the setting in ibaPADU-S-
IT

ibaBM-DPM-S (Profibus) |32 Mbit 32 Mbit Real 1000 ps

ABB AC800PEC

ibaLink-VME 32 Mbit depending on the card setting

Note

Applicable to FOB-X cards: If a 32 Mbit protocol is used on the input side, the
associated output link cannot be used.

@ Issue 4.2.4 191

Manual ibaLogic-V4

11.4.2

11.4.2.1

Settings
Output Format

Explanation

Data type of the FOC telegram in the output direction. The
setting depends on the device connected (see input format).

Signals

Here, ibalogic enters the maximum number of signals possible
depending on the data format selected. You can reduce the
number of signals for your requirement.

The number of signals entered applies to analog values and
digital values in the input and output direction.

An "FobFnnMxx" or "FobDnnMxx" module having "n" analog
signals of the type configured and "n" binary signals (nn = card
index, xx = link number) is created for each link enabled after
you press <Accept> in the resources tree under the appropriate
interface:

Buffered mode

With this, you can enable a mode for this link in which the data
received is also provided as arrays. See the following

description for this purpose.

Buffered Mode

Applications

The buffered mode is necessary for the following applications:

a

The least possible interval time of ibaLogic-V4 is 1 ms. If signal values need to be
sampled with a cycle time of less than 1 ms, the signal values must be recorded in
buffered mode. Above all, this must be used in the context of the following modules:

» FOB-D and FOB-X in 32 Mbit mode
= Connection to ibaPADU-S-IT (in I/O mode)
= Connection of the local peripherals for the PADU-S-IT platform

Even for peripheral signals that arrive with a cycle time of 1 ms, but which cannot
be evaluated in the 1 ms interval on account of the large number of signals and the

computing power required.

The values read in are buffered and provided to the program as array resources. The
purpose of this mode is to relieve the program from the evaluation of the individual
signals if this is not necessary.

Example:
Signals are required merely for FFT analysis. It is then not possible (with a sampling
time < 1 ms) and also not meaningful to sample individual signals and to collect them in
arrays in order to perform an FFT analysis on them. The arrays are generated by the
buffered mode with the proper size so that no computing time is required by the
program for handling individual values.

192

Issue 4.2.4

ibaLogic-V4

Manual

11.4.2.2

The buffered mode has the following features:

Q

Q

Data from the FOB link is sampled by the driver at a rate determined by the time
base configured.

The data sampled is collected in a cyclic buffer for each signal. The size of the
cyclic buffer and the sampling rate for filling it up are configured by the program in
the output resources (see below).

Each signal is made available to the program in the form of an array having a
length of 256. The program runs in a slower task interval and reads the complete
arrays.

The program, thus, cannot process individual samples, but instead, only arrays of
samples, e. g. for evaluating an FFT analysis or for archiving.

Example: Despite a sampling rate of 1 ms, and a task interval of 50 ms, you can still
perform an FFT analysis with 128 samples.

In parallel with the buffered data, individual signals can, for example, also be
generated for other programs.

Note

Buffered mode is possible only for the "Measurement" sampling mode.

Input Resources

An FobFBuffernnMxx or FobDBuffernnMxx mode is created (nn = card index, xx = link
number) for each link enabled in buffered mode after pressing <Accept> in the
resource tree under the appropriate interface.

170 Configurator

=83 FOBFOO # | | Hardware Configuration | &ssign Sighals
=B |
B +FE-:;erDMDD —
| = gt 1pUCE _)
4 & 3 Globah/ariabl
" FobFRUIMOCUD ataSize = E M;;ﬁ Fabes
™\, FobFBUFOMOFiICount S
™\, FobFOOMOOBut&nalD - e
™\, FobFOOMOOBuk&nal S

“4 FobFOOMO0B uktnal2
4 FobFOOMO0B uktnal?
4 FobFOOMO0B uktnald
4 FobFOOMO0B uktnals
4 FobFOOMO0B uktnalf

4 FobFOOMO0B uktnal?
M EARENNRANAR A e ane

fb FobFBufdbd Q0w ataSizellnt] -» FobFEuOMOCuWD ataSize
fb FobFEufMOFIICaunt(Int) -> FobFEufOkOFillCount

fb FobFO0MM00Butbnal0[F obfBuf_Int) -» FobFO0MO0BulAnal0
fb FobFO0MMO00Butanall [FobfBuf_Int) - FobFOOMODBut&nali
fb FobFO0MMO00Bulinal2(FobfBuf_Int) -» FobFOOMO0BulAnal2
fg} FobFO0MM00Butinal3(F obfBuf_Int) -» FobFOOMO0BulAnal3

figure 107: Assign input signals

Issue 4.2.4 193

Manual ibaLogic-V4

Input signals Explanation

CurDataSize Feedback of the buffer size configured in the output
signal.

FillCount Counter that is incremented when the input array has
been filled up to the length "Datasize".

BufAnaii Array of type integer or real having a length of 256.

BufDig00 Array of type Boolean having a length of 256.

Only for "variable cycle time"

CurCycleTime Feedback of the interrupt cycle time configured in the
output signal.

11.4.2.3 Output Resources

The resources are provided in the module type FobFBuffernnMxx or FobDBuffernnMxx
(nn = card index, xx = link index).

170 Configurator

=88 FOBFOD Hardware Configuration | Assign Signals
= FobFEufferDOMO0 e
| +E) Irputs [nputs
o 1* Outputs = [3 utputs
el | e Globaly/ariabl
N FobFBUIMOD staSize . Ez Mgm‘?h danEE
Y FobFBufIMOR atio S
Lo FDngD;EI;FEufDMDHequestBuffer 5 2 FobFBuifer00MOD
= 03 Anal
a E EetByfenHD) _ DE*ina;ghFB fOMOD ataSizelnt) -+ FobFEuFOMID ataSi
B FabFOOMO1 i obkEu ataSizellnt] -» FobFEu ataSize
: B FobFBuffeiOMO2 *& FobFELFOMOR atiolint] -» FobFBUIOMOR atio
w8 FabFOOMO2 & [Digital
- FobFBuffer00b03
B FobFOOMO3

figure 108: Assign output resources

Output signals Explanation

Data size Number of signals to be measured that are entered by
the driver in the buffer until the counter is incremented
("Filling level"). Values up to 256 are permissible.

Ratio Integral multiple of the time base, with which the buffers
are filled up. For example,ratio=2 means that only
every 2nd value of signal sampled is entered in the
buffer.

RequestBuffer Controlling the sampling. The buffers are filled up only if
the output is "TRUE"

Only for "variable cycle time"

CycleTime Variable interrupt time. Specification in microseconds.
Permissible values: 1000 ... 10000.

SetCycleTime Signal for accepting the cycle time (rising edge).

194 Issue 4.2.4 m

ibaLogic-V4 Manual

11.4.3

11.4.3.1

ibaLogic as Profibus Slave

The Profibus is organized strictly according to the master-slave principle. In
accordance with the DP-VO0 standard, communication takes place only between the
master and slaves, whereby the link is set up and monitored by the master. ibalLogic
can be both a Profibus master and a Profibus slave.

For example, for a link to a SIMATIC S7 system that is the master,
ibaLogic must work as a slave. The Profibus slave card, ibaCOM-L2B is used for this
purpose.

The following interface cards are arranged under the L2Bnn type of interface:

Q ibaCOM-L2B 4/8
(Profibus DP slave card with a jack, 4 slaves)

Q ibaCOM-L2B 8/8
(Profibus DP slave card with two jacks, 8 slaves)

Card Settings

When you mark the L2Bnn interface in the tree on the left, the associated card setting
are displayed on the right.

Card Settings
LzB PCI O

Interrupt Mode: Slave Mode w

Enabled

Settings Processar
Enable SlaveMo. Mode

Slavel 10 E Integer /0 v
Slavel n E Integer 1/0 R
Slave2 12 v Integer /0 v
Slaved 13 E Integer 170 v

Settings Processor 1
Enable SlaveMo Mode

14

Slaved Integer /0

Slavel Integer 170

Slave2 Integer /0

| |43 €| €2
£ L8])] %

BEEE
o

Slaved Integer 1/0

figure 109: Card Settings for ibaCom-L2B
U Interrupt Mode, see "Hardware Resources, Page 177"

Q Enabled, see "Hardware Resources, Page 177"

Issue 4.2.4 195

Manual ibaLogic-V4

11.4.3.2 Settings for bus interface 0/1

The L2B card has one or 2 Profibus DP interfaces. You can define 4 slaves for each

interface.
Settings Explanation
Enable You can enable or disable individual slaves here.
Slave no. Assign a separate station number to each slave that is enabled.
Mode Select a telegram format for each enabled slave that matches with
the Profibus master configuration. For this purpose, iba provides a
number of GSD files that correspond to the telegram formats
available here for selection:
Telegram iba GSD Contents Data direction
format file
Integer_In iba_0FO01 32 integer and 32 binary Master - ibalLogic
signals
Real_In iba_0F02 |32 real and 32 binary signals Master - ibalLogic
S7Real_In iba_0F04 |28 real and 32 binary signals Master - ibalLogic
Integer_inOut |iba_OF08 |32 integer and 32 binary Master <-> ibalogic
signals
Real_InOut iba_OF09 |32 real and 32 binary signals Master €<-> ibalLogic
S7Real_InOut |iba_0FOB |28 real and 32 binary signals Master <-> ibalLogic

A module "L2BnnMyySxx" is created for each slave enabled after pressing <Accept> in
the resource tree under the appropriate interface, and this module has the analog
signals of the type configured and 32 binary signals (nn=card index 00-03,
yy = interface number 00-01), xx = slave number 00-03).

11.4.4 ibalLogic as Profibus Master

If you would like to address, for example, an ET2000 station from ibalLogic, it must
work as the master. A Profibus master card must be installed in the ibaLogic PC for this
purpose.

The following interface card is plugged in under the SST_Masternn type of interface:
Q SST-PB3-PCU (one channel, PCI)

Q SST-PB3-PCU-2 (two channels, PCI)

Q SST-PB3-PCIE-1 (one channel, PCl Express)

O SST-PB3-PCIE-2 (two channels, PCI Express)

Note

Using the SST card requires a license.

196 Issue 4.2.4 @

ibaLogic-V4 Manual

11.4.4.1 Brief Description

Since this card is the product of another manufacturer, its configuration and
customization varies from the scheme for the iba cards.

In general, you must generate a configuration for the Profibus that contains the
parameters required for all the stations connected to the Profibus and for the
communication. The program for creating the configuration (SST Profibus Console)
generates a binary parameter file (.bss) as the result. This must be loaded by the
ibaLogic in the I/O configurator and transferred to the SST card.

11.4.4.2 Card Settings

When you mark the SST_Masternn interface in the tree on the left, the associated Card
Settings are displayed on the right.

Card Settings
FFB3-PCI-0000
Enabled

Configuration Channel 0

Enabled
File |C\Progiam FileshibahS5T corfigs\Configs bss (]

() Swap O () Swap Words
() Swap per Datatype) Swap DWords

Configuration Chatinel 1

Enabled
File:

Swiap OFf Swap Words
Swap per Datatype Swap D'Words

figure 110: Card Settings

"Enabled"
You can use this option to enable or disable the card.

@ Issue 4.2.4 197

Manual ibaLogic-V4

11.4.4.3 Configuration

"File"
This is where you specify the file generated using the CONSOLE program mentioned

above. You can click on to its right to open a browser with which you can select the file
in the folder structure.

"Swap modes"

Depending on the device connected, you may have to swap, i. e. interchange the
high and low parts of the data type so that the data can be read in and processed in
ibaLogic according to the IEC standard.

Explanation of the swap methods (each alphabet means one byte, blanks have been
added only for the sake of clarity):

Swap method Output Becomes

per Datatype "ABCD EF G H IJKL" |"DCBA FE G H LKJI"
Words "ABCD EF G H IJKL" |"BADC FE H G JILK"
Dwords "ABCD EF G H IJKL" |"DCBA HG F E LKJI"

11.4.4.4 Peculiarities with signal assignment

If you have enabled the configuration settings file of the card with <Accept>, a module
having the name of the SST card "PFB3-PCI-000x" is created in the resource tree
under SST_Master. The following signals for each possible Profibus slave are visible

under this:

Direction Signal Meaning

Input SSTnninStatusyyy Status and diagnostics information for telegrams
received from the slave yyy.
Data type: "SSTSTATUSSTRUCT"

Output SSTnnOutStatusyyy |Status and diagnostics information for telegrams
transmitted to the slave yyy.
Data type: "SSTSTATUSSTRUCT"

Input SSTnnStructinyyy Data received from the slave yyy
Data type "SST_Struct"

Output SSTnnStructOutyyy |Data transmitted to the slave yyy
Data type "SST_Struct"

nn = card index 00-03, yyy = Profibus slave number from 002-127

Now, you can generate the virtual signals for the complete module (see section "Signal
assignment, Page 182") or only for the status, input and output signals individually for
the Profibus slaves that you have configured and customized.

198 Issue 4.2.4 @

ibaLogic-V4 Manual

11.4.5

Note
The signals generated here have the structure data types.

The status structure generated internally, "SSTSTATUSSTRUCT" consists of a
number (ErrorCode) and a text string (ErrorString).

The "SST_Struct" data type is a placeholder for the structures of the user data
telegrams that you have to define. This structure must match the Profibus telegram to
be transmitted or received exactly as you have defined in the Profibus
configuration (Profibus Console) for each station. You can refer to the manual of the
L2B cards for the structure of the Profibus telegrams (L2B).

For more information, please refer to "Data types, Page 278".

Important Note

An example of the connection of the Profibus master card is documented and included
in the CD supplied.

SIMADYN D / SIMATIC TDC Connection

iba has developed two PCI cards for connection to these systems and these cards
differ from one another merely in the FOC interface technology and protocols.

U The ibaFOB-SD card is plugged in at the FOBSD type of interface. This enables
connection to the world of SIMADYN D via the rack coupling modules CS12, CS13
and CS14 as well as to the SIMATIC TDC rack using the CP53MO0 communication
module.

Q The ibaFOB-TDC card is plugged in at the FOBTDC type of interface. This enables
connection to the world of SIMATIC TDC via the GDM (Global Data Memory,
CP52I0 interface module).

Note

The settings for the FOBSD and FOBTDC modules are identical. Hence, the settings
are explained here using the ibaFOB-SD card as an example.

Issue 4.2.4 199

Manual ibaLogic-V4

11.4.5.1

11.4.5.2

Card settings

When you mark the FOBSD interface in the tree on the left, the associated Card
Settings are displayed on the right.

Card Settings

FabSD 0

Interrupt Mode: Slave Mode w

[] Enabled

Active Inputs Active Outputs Communication Settings

[] Channel 0] Chatnel & [] Chatnel 0 EGT Mame éQADD1
[] Channel 1 [] Chatnel 9 [] Chatnel 1 Lirk Name |IBALTA

Partrer Name | 003008
Software Yersion | Y420

[] Channel 2 [] Chatnel 10 [] Chatnel 2
[] Channel 3 [] Chatnel 11 [] Chatnel 2
[] Channel 4 [] Channel 12 [] Channel 4
[] Channel 5 [] Channel 12 [] Channel &
[] Channel & [] Channel 14 [] Channel &
[] Channel 7 [] Channel 15 [] Channel 7

Technosting
figure 111: Card Settings for ibaFOB-SD/TDC
O Interrupt Mode, see "Hardware Resources, Page 177"

U Enabled, see "Hardware Resources, Page 177"

Link settings

Active Inputs

Select one or more inputs here specifically from a total of 16 channels.

Please note that there must be a transmit telegram present in the SIMADYN D or
SIMATIC TDC for each input channel that you select.

One transmit telegram contains exactly 32 real values (Data type NF for SIMADYN D)
and 32 binary values (1 DWORD or V4 value).

The following parameters must be configured on the transmitter module:

O AT (Channel name): MxPDADAT (x =0 ... F for channel 0 to 15)
Q MOD (Channel mode): R (for Refresh)
Q LEN (Telegram length): 132 (only for the CTV_P transmitter module)

Active Outputs
Here, you can specifically select one or more outputs from a total of 8 channels.

Please note that a receive telegram must be present in the SIMADYN D or
SIMATIC TDC for each output channel that you select.

A receive telegram contains exactly 32 real values (Data type NF for SIMADYN D) and
32 binary values (1 DWORD or V4 value).

200

Issue 4.2.4 m

ibaLogic-V4 Manual

11.4.5.3

11.4.6

The following parameters must be configured on the receiver module:

Q@ AR (Channel name): PDAMXxDAT (x=0...7 for channel 0 to 7)
d MOD (Channel mode): R (for Refresh)
Q LEN (Telegram length): 132 (only for the CRV_P receiver module)

An "FOBSDnnCHxx" (nn = card index, xx = channel index) module containing a total of
32 real and 32 binary signals is created for each channel enabled after pressing
<Accept> in the resource tree under the appropriate interface.

Technostring
The "Technostring" function has not yet been released.

Communication Settings

Q BGT Name:
The PC must be defined to the SD/TDC environment using a name consisting if six
characters, e. g. "IBA0O1".

Q Link Name:
The ibaFOB-SD uses this name to register with the communication partner
SIMADYN D or SIMATIC TDC. This name must be unique within the CS14 or
CP53MO0 communication island, i. e. no other Siemens or iba modules should
register with the same name. The default name is "IBAL1A".

O Partner Name:
Enter the name configured in the SIMADYN D or SIMATIC TDC for the
communication partner module here.
For SIMADYN D, it is the name of the CS14 module, e. g. "D0500B",
and for SIMATIC TDC (GDM), it is the name of the GDM module, usually D01_P1.

O Software Version:
Enter the software version of the SIMADYN D or SIMATIC TDC software here: e. g.
for STRUC V420", and for CFC "V610".

Note

No communication takes place if these settings are incorrect.

Reflective Memory

You can access VME bus-based third-party systems (e.g.: GE FANUC,
Converteam HPCi) using reflective memory cards.

The following interface cards are plugged in under the RFM type of interface:

Q VMIC PCI-5565PIORC:
(Reflective memory card, 64 or 128 MByte)

Q VMIC PCI-5588 among others:
(Reflective memory cards of older design)

Issue 4.2.4 201

Manual ibaLogic-V4

11.4.6.1

11.4.6.2

11.4.6.3

Brief Description

Since this card is the product of another manufacturer, its configuration and
customization varies from the scheme of the iba cards.

As the memory of an RFM card does not have any homogeneous data range, but
contains ranges with different data types, it cannot be used the same parameters as
that for iba-FOB cards.

You have to define the position and structure of the data used in an external parameter
file. This is loaded in the ibalLogic I/O configurator and signals in the desired data types
are generated from there.

Card Settings

When you mark the RFM interface in the tree on the left, the associated Card Settings
are displayed on the right.

Card Settingz
RFr00
Enabled

Configuration
FFt 557 =/558 RFH 5565

Mo Swap Enable Dibdd, transfer

Swap Bute [] Big Endian D'wORD access
Swap 'Word

Swap 'Word ahd Byte

Swap on Datatype

File: (]
Generate Template

figure 112: Reflective memory cards

O Enabled
You can use this option to enable or disable the card.

Configuration

Q Swap mode

The swap mode is only available for the older RFM cards which directly support this in
the hardware.
Newer cards (PCI-5565 or PCIE-5565) no longer support this.

Note

The methods defined here are different from those for the SST card. The designations
here are taken over from the VMIC so that they match with the RFM cards connected
to them.

202

Issue 4.2.4 m

ibaLogic-V4

Manual

Explanation of the swap methods (each alphabet means one byte, blanks have been
added only for the sake of clarity):

Swap mode Explanation

Not "ABCD EF G H IJKL"
Bytes "BADC FE H G JILK"
Words "CDAB GH E F KLIJ"

Words and bytes

"DCBA HG F E LKJI"

based on data type

"DCBA FE G H LKJ"

11.4.6.4 File

Parameter file that contains the description of the signals.

Procedure

1. Generate a template for this data using the <Generate Template> button.

2. Next, open this file using an editor.

3. Enter aline in the following format for each signal:
"Signal name, data type, memory address, bit number, direction, comments"

Format Explanation

Signal name Must conform to the IEC standard and be unique, i.e. also
input and output signal names have to be different.

Data type Elementary data type (see "Standard data types, Page 278")

BOOL

BYTE, WORD, DWORD

SINT, USINT, INT, UINT, DINT, UDINT
REAL, LREAL

Memory address

Offset within the RFM memory in decimal or hexadecimal.
You can switch from one to the other using a line
with "#hexval" or "#intval" at the beginning.

Bit number Relevant only for BOOLEAN data type, otherwise 0
Direction "INPUT" or "OUTPUT"
Comments Any text
i85 Issue 4.2.4 203

Manual

ibaLogic-V4

11.4.6.5

Example

#HexVal

TestSignall, REAL,0x1000,0, INPUT, test signal input
TestSignal2, REAL, 0x2000,0,0UTPUT, test signal output
#IntVal

TestBit 0,BOOL,2048,0,0UTPUT, Bit 0

TestBit 1,BOOL,2048,1,0UTPUT, Bit 1

TestBit 2,BOOL,2048,2,0UTPUT, Bit 2

Result
A template file is generated.

Flow of Setting Parameters

Procedure

1. Press the <Generate Template> button and enter the path and file name in order to

generate a CSV file as a template.

2. Open this data using an editor and enter the signals into it.

3. Open the modified file in the I/O configurator and load the configuration in the RFM

card by clicking on <Accept>.

4. Wait until the initialization phase is complete and the RFM card has been fed with

these parameters.

5. Then press <Update Hardware> once again so that the signals defined are

displayed in the resource tree.

6. Assign the generated signals to the virtual signal names.

11.5 ibaPADU-S-IT Platform
Local Peripherals of the ibaPADU-S system is available only if a device of type
ibaPADU-S-IT has been selected as the platform.
ibaPADU-S-IT is the central unit for the ibaPADU-S family of modular devices for
intelligent and decentralized inputs/outputs.
The modular concept is based on a module rack having a rear wall bus, in which the
central unit and up to 4 other input/output modules can be plugged in.
There are modules available as 1/0 modules for analog and digital inputs/outputs for
different signal levels, for current and voltage signals and for sampling rates of up to
1 kHz (buffered access) or max. 40 kHz (unbuffered access).
Hardware Documentation
Please refer to the ibaPADU-S-IT manual for detailed information on the ibaPADU-S
properties (see "Support and contact, Page 330").

204 Issue 4.2.4

ibaLogic-V4 Manual

11.5.1

Settings

When you are connected with the platform and press the <Update Hardware> button,
you see the following PADU-S settings.

PADU-S settings Explanation
Interrupt source DNS name of the PADU-S-IT, e.g. "S-IT-16-000074"
Module settings depending on the 1/O resource
Signal settings depending on the I/O resource
I/O resources PADU-S-IT incl. PADU-S module
TCPIP_OUT
GLOBALVAR

Module settings

In the "Module settings" section, all available modules of the ibaPADU-S system are
displayed depending on the selected I/O resources.

U Enabled:
You can completely disable specific modules.
Q Buffered access:

If the buffered access is enabled, further configurations in the ibaLogic program must
be performed (see ibaPADU-S-IT-16 manual).

Only with a buffered access it is possible to reach a sampling rate of up to 20 kHz on
the ibaPADU-S system.

In unbuffered access, max. 1 kHz is available (task interval = 1 ms)
Q Convert values into REAL:

If this option is selected, the signals are acquired not as INT, but as REAL and can be
processed in the program without further conversion.

Note

Depending on the module type, the "Buffered access" and "Convert values into REAL"
options are not available.

Signal settings

In the "Signal settings" section, all configurable signals of the particular I/O resource
are displayed depending on the selected I/0O resources and corresponding module
settings (see ibaPADU-S-IT-16 manual).

Issue 4.2.4 205

Manual ibaLogic-V4

11.6 TCP/IP Communication
The following types of TCP/IP communication are available:
U General TCP/IP connection via the module (for more information, please refer to
section "TCPIP_SENDRECYV, Page 104")
U ibaPDA data transmission using TCP/IP
TCP/IP communication, whose parameters can be configured in the 1/0O configurator, is
presently limited to TCP/IP telegram transmission to the ibaPDA. In contrast to the
native TCP/IP communication with the TCPIP_SENDRECV module, the module
structure in the ibaPDA is supported here using a special protocol. On the WinXP or
PADU-S-IT platforms, you can transmit a total of 16 telegrams each having 32 real
values and 32 digital values to one or more ibaPDA receivers.
Note
Please note that the communication via TCP/IP is not real-time enabled. This means
that data transmitted cyclically is not received in real time, and some telegrams may
get lost etc.
11.6.1 TCPI/IP Connection Settings
Select the appropriate channel from the tree on the left for the setting.
You can enable each of the 16 channels individually and enter the following
parameters:
10 Configurator
[= FOBFOO Hardware Configuration | Assign Signals
B L2B00
[FOBSDOO s
&5 FOBTDCOOD
&8 TePP 0T e Btk [0 W m
(2 GLOBALVAR (& SoftPLC
e) Measurement
F'é\;g:;ﬁunneclnr a
\pAdd,essg:, Wame |127.0.01 [4f0c 3cTelb5e1]
__UpdalEHaldwavE - ok [#epy | [cancel
figure 113: TCP/IP Connection Settings
U IP address or name of the remote station, i. e. the computer on which the
ibaPDA Server is running.
U Port number: This must match that in the ibaPDA.
Default setting is 40000.
206 Issue 4.2.4 i8]

ibaLogic-V4 Manual

11.7

11.71

Note

On the ibaPDA system, the configured port must be enabled in the firewall to be able
to measure the data with ibaPDA.

Q PDA module number is a unique number 0..63. This must match a module index of
the PDA system connected.

OPC Communication

The international OPC standard (OLE for Process Control) has prevailed for the
connection to HMI systems (Human Machine Interface, control & monitoring) or for the
measurement of slow signals.

OPC Server

The ibaLogic OPC Server provides all variables defined as "OPC visible" to the OPC
Clients, which have been connected to the OPC Server. The OPC Server generally
runs on the same machine as the ibalLogic Server and is connected with the PMAC via
TCP/IP.

Note

The number of OPC variables permissible depends on the license purchased
(Dongle).

Note

You can also run the OPC Server on another computer. You have to make a special
inquiry with iba for this purpose.

An OPC Client finds the ibaLogic OPC Server under the name
"iba.Logic4OPC.1". You can select the OPC variables using their variable names with
the help of a browser service if the link is established.

The OPC Server works according to the DA (Data Access) specification V2.05a.

Note

You have to make a number of settings in DCOM and carry out safety guidelines for
connecting the OPC Client to the OPC Server.

Documentation

There is a separate document for this purpose that you can get from iba on request.

Issue 4.2.4 207

Manual ibaLogic-V4

1. In order to set certain OPC Server properties, open the options of ibalLogic by using
the
"Tools - Options..." menu item.

E¥ ibalogic Client 4.2.1 [4FOC3C7EFB5F4E1] - NewWorks pace

Fle Edt W%ew Evaluation Function Diagram Help

i fllnew - Sgopen | WSt Lo - Dist | {# 10 Configurator
‘workspace Explarer Program [© ;
ﬁ IEC Wiew | = ‘ @ | “ | Platform Configuration
=] QE wiorkspace ‘Mewworkspace' {4 7@ Export Configuration
=] ﬁ NewProject] S options...
D Confination

2. Switch to the tree on the left and select "Runtime Options".

Options
W eneral = RuntimeOption
Messages These settings apply to the current project
Sysh.am Compiler Options
- |E- Dplicrs (®) Size [UCODE only, with ST breakpoints]
| Editers () Both [UCODE and native code mived, na 5T breakpoints]
Diata Tppes < : : 2 -
Bl L () Speed [native code only, no breakpaints possible, not all LREAL functions available)
Diagram -
W'olgkspacas SRE Lt ——a
() Dizable OPC Sarver Value update time |0 3_‘ ms
) Read Only mode
(®) Read andWiite made
[&llitems visible for read
] i)
QK I [Apply] [Cancel
3. Set the desired option.
Option Explanation
Disable OPC Server The OPC Server is shut down completely.
Read only mode Even those variables that have been defined as "OPC
write-enabled" can only be read.
Read and write mode Default setting: Access is as defined in the variable
parameters.

All elements are visible Even the variables that are not "OPC visible" can be read
for reading by the OPC Clients but cannot be written.

208

Issue 4.2.4 m

ibaLogic-V4 Manual

11.7.2

Setting the OPC Variable Parameters

An off-task connector (OTC) must be created for each OPC signal desired in ibalLogic.
The OPC selection fields must be enabled in the "Off-Task Connector Edit" dialog box.

Off-task connector edit dialog

'? Hame HMI_Temperature_Motord. v
&= I

Connestor Type -
@ Input [target]) Data type: REAL v/

Description

) Output (sawce] Default value: (0.0

opPC
OFC visible
OFC witable

figure 114: Edit Off-Task Connector

The data types allowed for the OPC connection depends on the data type of the OPC

Client used. Normally, you can use the elementary data types and arrays.

The shortest update time is 50 ms as seen from ibalLogic, however, you must note that

this depends to a large extent on the data volume.

The OPC variables are marked and identified with special colors. For more information

on setting parameters, see "Off-Task Connectors, Page 157".

You can find the OPC Server using the OPC Server browser under the

name "iba.Logic4OPC.1".

Issue 4.2.4

209

Manual ibaLogic-V4

12 Database Management
ibaLogic is a database-based application. In order to save intermediate results, you
must backup the database regularly. ibalogic-V4 provides support for this purpose by
offering the options of automatic or manual backup.
121 Backup Database
You should always consider database backup before making comprehensive
modifications to it.
12.1.1 Manual Database Backup
Backup always saves the complete and current ibaLogic database. This database may
have several workspaces. You can see the workspaces that currently exist in the
database in the client by selecting the "Open Workspace" menu option.
Prerequisite
U You have opened the ibaLogic Server dialog box.
U You have a connection to the database.
Procedure
1. Select the "Backup - Database..." menu.
w ibalogic Server 4.2.4
Server | Database | Tools Help
albee 3 Database Connections... _—v'
Database Scripts. .. —
'-:5 Reset Database
-,| S Backup... |
= Restore,
Databaze Server: LOGIC4-PCMBA,
Stopped [+ _ﬁ N
The following dialog box opens:
Backup @@
TE H Backup Database
File harne: || _fi g
Compress backup to zip
Ok] [Cancel]
210 Issue 4.2.4 i8]

ibaLogic-V4 Manual

2. Choose a file name and a folder in which the backup file should be saved.
Enable the option "Compress backup to zip", if the hardware configuration of the I/O
manager and all DLLs present should also be saved.

| o g o=

Compress backup to zip

0K] [Cancel]

3. Click on <OK>.

ﬁ! ibalogic Server 4.2.4

Server Database Tools Help

o S

D atabaze Server: LOGICA-PCHBA

Eackup starked, ., CCIIIII R ET R

Important Note
It is particularly recommended to backup the database before updating the ibalogic
version.

In the course of further advanced development of ibalLogic, during updates of
ibaLogic, modifications are also made to the database with the help of database
scripts. It is then no longer possible to revert to an older version.

12.1.2 Automatic Database Backup

You have to configure the setting in ibalLogic for automatic database backup.

Requirement
U You have opened the ibalLogic Server dialog box.

1 You have a connection to the database.

@ Issue 4.2.4 211

Manual

ibaLogic-V4

Procedure
1. Select the "Tools - Options" menu.

i’!ihaLugic Server 4.2.4

Server Database | Tools | Help

| '& Options

Show PMACS in nebwark
e

LOGIC4-FCMES,

D atabase Server;

Started % = _g; .

2. Select "Server - Autobackup" in the folder tree.

w ibalogic Server - Options

[l Environment
=W Server
[Autobackup

[Autostart Server |
>

Enable Autobackup

Automatic backup options:

Backup interval: |_1€1 !hour[s] v
tin backups: 0%

Autobackup folder:

Automatic Backup Options

tinimum count of backups to be kept

Elemnipohe = | week[s] > ';1;2::31[:?3 span between last backup and backups to be

Comprezs backups to zip

0K

J |

Apply

J{

Cancel

3. Tick the checkbox "Enable Autobackup ".

4. Select the time period for the backup interval.

Since modifications to ibalLogic projects can be made only with ibaLogic Clients, the
interval is started only when a client is connected to the server. If a modification has
been detected in the database, a new backup in the form of a *.bak or *.zip file is

created after the interval time has elapsed.

212

Issue 4.2.4

ibaLogic-V4 Manual

Important Note

Specify different folders for automatic and manual backup respectively. Since the
cleanup strategy cleans up only the folder specified for automatic backup, you can
thus prevent your manual backup copies from being deleted.

The cleanup strategy is determined by the combination of the
Q "Time until cleanup” (Cleanup offset)

O "Number of backup copies"

fields.

Option Explanation

Backup interval The setting creates a backup at the time interval specified.

Time until cleanup (Offset) The setting creates backup copies until the minimum time span of
the backup and cleanup offset is reached.

Number of backup copies The option determines the minimum number of backup copies
that remain at all times. The time period " Cleanup offset " is
taken into consideration in the process.

Backup folder The file names are assigned by ibalLogic:
"Autobackup_ibalogic4_<Date, Time>.bak" or ".....zip".

Date and time are defined in YYYYMMDDHHMM format.

Compress backup to ZIP file The option saves the backup as a ZIP file.

Example

If you have the settings as illustrated in the window given above, all backup copies that
are older than one week are deleted. However, at least 10 files remain. These can be
of any date.

@ Issue 4.2.4 213

Manual

ibaLogic-V4

12.2 Restore Database
Restore means that a previous version of the database with the workspaces contained
in it will be loaded for editing.
Prerequisite
U You have opened the ibalLogic Server dialog box.
U You have a connection to the database.
U You have stopped the ibalLogic Server.
Procedure
1. Select the "Restore - Database..." menu.
w ibalogic Server 4.2.4 E”E]E|
SErver Dat:al_:u_asn_?: Tools Help
ialbne ﬁ Database Connections. .. —ViE]
Database Scripks... -
Reset Database
- |&¢| Backup...
wp| Restore,.,
Database Server: LOGIC4-PChBA
Stopped ﬁ - B
The "Restore" dialog box is displayed.
Restore @@
rh] T Restore Database
= u
File marme: | v|g
[(0] 4] [Cancel]
2. Click on the <......> button and select a backup database (ZIP or BAK file) from the
folder that is open.
By default, ibalLogic provides the folder given below or notes the path to which the
last access was made.
214 Issue 4.2.4

ibaLogic-V4 Manual

Restore |E| EJ

% F D Restore Database

File name:

[_ Ok] [Cancel]

3. Click on the <OK> button to restore the backup copy.

The progress of the backup process is displayed on the screen. Thereafter, the
server goes to the "Stopped" state.

¥* ibaLogic Server 4.2.4 |Z| |E|rz|

Server Database Tools Help

P o=

D atabaze Server: LOGICA-PCHBA

Restore, .. [u-------] E - _Fa = I_J = _

4. If required, confirm any confirmation prompts that pop up.

5. Start the server for continuing the programming work via the client.

m Issue 4.2.4 215

Manual ibaLogic-V4

12.3 Reset Database

You can use this function to reset your current database to its original state (empty).

Important Note

This also deletes all data in the database.

First, make a backup copy of the database.

Prerequisite
U You have opened the ibalLogic Server dialog box.

1 You have a connection to the database.

U You have stopped the ibalogic Server.

Procedure
1. Select the "Databases — Reset Database...... "'menu.

aihaLugir. Server 4.2.4

Server | Database | Tools Help
.’.‘ . .-
Database| Database Connections... 3 |
Database Scripts. .. —
'I'Ej Reset Database
118s Backup...
= Restore,
Database Server: LOGIC4-PCHBA
Stopped [+ _ﬁ N

2. Confirm the dialog with OK if you really want to reset the database.

216 Issue 4.2.4 @

ibaLogic-V4 Manual

13

13.1

Program Analysis, Debugging and Time behavior
You have various methods and tools available for program analysis and debugging.

You need to differentiate between whether the application is in the test environment or
is already actively in use.

Description Test Active Use
environment

Debugging Structured Text blocks using Yes No

breakpoints (Program is

stopped.)

Trace blocks or Log DLLs created by the user Yes Conditional

(e. g. LogFile_String_WriteDIlLdIl,) (Time behavior)

Analysis of the Time behavior, curve shape etc. Yes Yes

with ibaPDA Express

Writing DAT files for ibaAnalyzer with the help of | Yes Yes

the DAT_FILE_WRITE block

ibaPDA Express

The ibaPDA Express is used for checking a signal waveform quickly.

Requirement
The function is available only when the program has been switched online.

Procedure

<o Start the ibaPDA Express by clicking with the mouse on the
<ibaPDA Express> button in the toolbar.

~ | & baPDd Express

ibaPDA Express

Result
ibaPDA Express is opened with its own window within the ibalLogic application.

%7 ibaPDA Express 1,5.12.0 [localhost]

figure 115: ibaPDA Express with several signals

Issue 4.2.4 217

Manual ibaLogic-V4

13.1.1 Controlling the Signal Display
The following toolbar is available for controlling the signal display.
0l & i = 5 -
figure 116: ibaPDA Express: Toolbar
The following table contains the explanation of the icons.
Icon Name Key operation Explanation
Start scrolling <F6> Starts continuous display with the current time
D (Switch) point.
Active, when "Pause scroll" is pressed.
Pause scroll <F6> Stop the continuous display. After pressing this,
I]I] (Switch) a ruler appears in the graph that can be moved
with the mouse and with which the curves can be
measured. The signal values are displayed in the
legend. You can move the X-axis using the
mouse. In this manner, you can browse values
from the past.
Active, when the display is on.
Assign signal All curves of this display are colored in
Q colors automatically accordance with the default scheme for each
graph.
I Auto scale all <F5> All curves of this display are scaled automatically
I Y for each graph and the Y-axis.
Restore manual Manual settings for scaling, where defined, are
T_@ scaling restored after auto scaling or zooming.
Active, if manual scaling has been defined.
= Zoom out by one <F3> Active only when the display has been zoomed.
j") step Return to the previous zoom factor (reduce).
= Zoom out all <F4> Active only when the display has been zoomed.
fﬁ% Return to the initial (automatic) display.
Scroll direction You can change the scroll direction by selection
EI M in the pull-down menu.
13.1.2 Select Signals
You can drag signals by keeping the <Alt> button pressed from a connector and drop
them into the ibaPDA Express window.
Optionally, you can:
U Display a signal in a separate signal strip.
To do this, drag the signal on the X-axis and a new strip is created.
U Place a signal in an existing strip.
To do this, drag the signal to the strip, and another Y-axis is created.
U Place a signal on an existing Y-axis (same scaling with one other signal).
To do this, drag the signal to this Y-axis.
The new signals in one window are automatically assigned a new color. Those signal
names having the same color are arranged in the top left section of the strip. Signals
having a common axis are joined with a dash.
218 Issue 4.2.4 i8]

ibaLogic-V4 Manual

13.1.3 Move signal

Signals can be moved between graphs and also beyond the limits of the window. This
means that a signal can be dragged from one graph to another graph that already has
a signal. You can differentiate between the signals with the help of the automatic color
assignment.

Procedure

1. Move the mouse pointer to the name (Legend) of the signal that needs to be
moved. The mouse pointer indicates with a wavy line that it has acquired the signal.

x S g
WAMAMAA NYIYITIY

2. Drag the signal, keeping the mouse button pressed, to the other graph in order to
drop it there in a free area.

k|
k| — Cosinus 1 Hz
— Cosinus 1 Hz — Sinus 1 Hz

i

You have created two signals with separate Y-axis.

Result

Remark

Do not leave the signal in step2, but drag it to the existing signal until a small black
arrow appears. In this manner, the same Y-axis is assigned to the signal.

In case of binary signals, you also determine the sequence of the signals. Binary
signals are displayed below one another. Depending on whether the small black arrow
docks above or — as illustrated below — the signal, the binary signal is displayed above
or below it.

x|
x| Caosinus 1 Hz

(-;_ iRttbEy l=HEy | Sinus 1 Hz
- %gm 1Hz

Result
You have created two signals with a common Y-axis.

@ Issue 4.2.4 219

Manual ibaLogic-V4

13.1.4 Mark the signals with color
You can mark the signals with colors in different ways:
Q Automatically
U Manual setting
Procedure
2 Press the <Assign signal colors automatically> button to assign colors to the signals
automatically.
x|
Cosinus 1 Hz
Sinus 1 Hz
13.1.5 Remove Signal from the Display
Procedure
1. Place the mouse pointer in the graph on the name (Legend) of the signal that needs
to be removed.
2. Click the right mouse button. The context menu is displayed.
3. Select "Remove signal".
Note
By removing the Y-axis, all signals are removed that are assigned to this axis.
13.1.6 Remove Graphs from the Display
There are different options to remove a graph.
Procedure
1. Click on the small cross at the top left above the top of the bar.
x|
Cosinus 1 Hz
Sinus 1 Hz
or
220 Issue 4.2.4 i8]

ibaLogic-V4 Manual

13.1.7

13.1.7.1

13.1.7.2

2. Click the right mouse button in a free area within the graph.
The context menu is displayed.

3. Select "Remove graph".
Scale Axes

Auto scaling

In order to display a signal over its entire amplitude range in one graph, it is
recommended that you use the auto scaling feature. All signals or all Y-axes of the
graph are scaled accordingly with respect to the largest amplitude.

Procedure

1. Press the right mouse button in the appropriate graph. The context menu is
displayed.

2. Select "Auto scale".

3. If you would like to auto scale all graphs in one signal display, press the <F5> key
or select the <Auto scale all> button.

Scaling with the mouse

You can change the scale of the signals in the Y-direction at the upper ends of
the Y-axis scale using the mouse.

Procedure
1. Bring the mouse pointer close to the end of the scale until blue arrows appear.

2. Keep the mouse button pressed on the arrow pointing upwards: The scale gets
expanded.

3. Keep the mouse button pressed on the arrow pointing downwards: The scale gets
reduced.

4. Keep the mouse button pressed on the dot between the arrows: Auto scaling is
carried out.

&

f\f\gb

Tip
If you are using a mouse with a scroll wheel, you only need to position the mouse

pointer on the scale. You can change the scale using the scroll wheel. This
functionality is also available on the X-axis.

Issue 4.2.4 221

Manual ibaLogic-V4

13.1.7.3 Scaling using the display settings

Procedure

1. Click the right mouse button in the area within the desired graph.

2. Select "Properties".
The "Properties" dialog box is displayed.
You can specify manual scaling using the "Y-axis" option. If a graph has multiple Y-
axes, there is a separate tab in the dialog box for each Y-axis.

3. Accept the settings with <Apply>.

Properties g@@
=L~ Trend graph
BB, oz cientific notation : Auto v|
="\ Graph 1 efeni ! i ==
Scaling mode : (&) Auto scale
() Dynamic auto scale
() Dynamic alta scale [increase only)
() Manual scale tdin \/ 'I I]ZI]D
Max [,/ 10200
‘I:‘ Apply to preferences Apply] [Ok] [Cancel
Result
All signals that are assigned to the corresponding Y-axis are scaled with the same
setting.
Remarks

By selecting the "Apply to preferences" option, you select the settings configured as the
default settings.

13.1.8 Move Scales

You can move the X-axis as desired in the pause mode of the display.

Requirement
Y-axis: Auto scaling is not selected.

222 Issue 4.2.4 m

ibaLogic-V4 Manual

13.1.9

13.1.9.1

13.1.9.2

Procedure
1. Position the mouse pointer on the Y-axis until the hand icon appears.

2. Press the left mouse button in order to move the scale upwards / downwards or to
the left / right.

x| 125-
bl]
25-

e

e

Zoom Function
The zoom function affects both the X and Y directions.

If you zoom in a graph, all other graphs located in the same display also get zoomed.
A signal display can always maintain only one time base for all the graphs that it
contains.

When the display is active and running, zooming expands the time base and hence
enlarges the display. The signals run through faster, since the same geometric length of
the X-axis is converted to fewer units of time.

Zooming in general

1. Press the <Shift> button and zoom simultaneously with the mouse. Only the X-axis
is zoomed.

2. You can restore the original and un-zoomed display using the "7‘% button or the
<F4> key.
Zooming in (Enlarge)

You can zoom in all over in one strip. In the zoomed in state, you can change the scale
in the Y-direction without affecting the zoomed section of the X-axis.

Auto scaling in the Y-direction pertains to the values in the zoomed (= visible) area.

Requirement
You have zoomed out.

Procedure
1. Draw a rectangle using the left mouse button so that the area selected is enclosed.

2. Release the mouse button.

Zoom out (Reduce)

Requirement
You have zoomed in.

Issue 4.2.4 223

Manual ibaLogic-V4

Procedure

1. Press the <Zoom out one step> button or the <F3> key to achieve reduction step by
step.
Thus, with each action, all previous zoom steps are reversed one after another.

2. You can restore the original and un-zoomed display using the <Zoom out all
steps>button or the <F4>key.

13.1.10 Trend graph Properties
You can configure general settings for the display of graphs in the Trend graph
Properties dialog box.
Procedure
1. Click with the right mouse button on the signal strip.
2. Click with the left mouse button on "Properties...".
3. Select "Trend graph" in the structure on the left.
Mizcellaneous :
2% Graph 1 ["]Enable smooth drawing Orientation: Right ta Left W
Tv Whaiz 1 [¥] Show toolnar Riestart scrolling after 3UU 7]
Show signal barz Timer interval: EI]
et ot T |
Show close buttan Shaw signal values in legend
Show Y-axes [&lign digital signals with legend
Colors
Background calar : @ Az colar : E Gridlines calar : @
Graph color: () Single calar E
() Gradient A A
O O
Signal colors : E] D D E] E] E] D E]
Fants = =
Auiz font : EAliaI; Spt E]
Legend fant %Alia[,' .s-pt E]
[] Apply to preferences Apply] [Ok] [Cancel
224 Issue 4.2.4 i8]

ibaLogic-V4 Manual
13.1.10.1 Miscellaneous

Option Explanation

Activate smoothed display This option smoothens the graph lines as they are
displayed.

Display toolbar This option displays the toolbar.

Displays signal values in the This option displays the signal values in the legend.

legend

Display bars This option displays the bar associated with the
graph.

Transparent legend This option makes the legend style transparent.

Scroll direction The scroll direction is set.

Restart scrolling Configuration of a certain time in seconds, which
restarts scrolling after inactivity for this period of
time.

Refresh interval Setting for the time intervals at which the display
should be refreshed.

Align digital signals with the This option aligns the digital signals with the legend.

legend

13.1.10.2Colors

You can use this dialog screen to change the color scheme for the trend graph display
and the pen colors for the curves.

=

Q
=

Click on the respective color button to change the color. Select the desired color
from a color palette.

Background, axes, gridlines:

Click on the respective color button to change the color. Select the desired color
from the color palette.

Graph:
Background color in the signal strip uniform or with progressive color.

Double click on the small box at the end of the color bar and select the color from
the color palette.

If required, you can double click on the color chart to add other color tabs and to
color them, and these can also be moved. In order to delete a color tab, mark it with
a mouse click (black arrow tip) and press the key.

Signals:

You can use these pen colors to define 16 curve colors that are available for the
trend curve display. The program assigns colors to the trend curves automatically
based on these 16 colors. The pen colors are also provided in the signal definition
in the signal grid in the sequence shown here (line wise from the top to the bottom).

Issue 4.2.4 225

Manual ibaLogic-V4

13.1.10.3Fonts

The fonts are defined for the lettering of the axes and the legends (Signal names). You
can open the dialog box to change the font using the <...>browser button at the end of
the line.

13.1.10.4Signals

If you call up this dialog box in a graph or for an existing trend graph, in which signals
are being displayed, the signals with their current setting are listed, including the colors.

Sinus 1 Hz
—IE Cosinus 1 Hz
SinCos

NN

— N N

figure 117: Trend graph

Offset Color Filled Pen width

|

| Graph: O

| 10_Kon.ibaLogicFBL_1.5inus 0| E—
| .IOJ(Un.lbaLDg\:FBlJ .SinCos 0| I |
| 10_on.ibalogicFEL _1.Cosinus 0|

Oo=O

figure 118: Graphical signal settings

You can choose the color for each signal from a selection list in the cells of the "Color"
column of the table.

figure 119: Color selection list

13.1.10.5 X-axis

Time range

You can specify a fixed time range in seconds instead of automatic scaling, and this is
shown in the display. In this manner, you control the speed and the expansion of the
signal in the X-direction in the display.

Time range : '4EI | % [+] fiwed axis

figure 120: X-axis: Properties

226 Issue 4.2.4 @

ibaLogic-V4 Manual

Fixed axis

Normally, the time axis moves with the signal so that new values sampled are always
shown at the border of the graph in the display. Using the "Fixed axis" option, the time
axis from the current time point for the period (time range) configured is fixed and the
sampled values are written into the empty graph. If the graph is filled, the next (empty)
time range is displayed and sampled values continue to be written.

13.1.10.6 Y -axis

If you have created more than one Y-axis in a graph, the settings dialog screen has
multiple "Y-axis #" tabs. Thus, you can configure settings for all Y-axes separately.

Properties E]@
[=-L~ Trend araph
= B, Kohuis Scientiic notation: [&uto »
=" Graph 1 :
Scaling mode (%) &uto scale
() Dynamic auto scale
() Dynamic auto scale (increase only)
) Manual scale Min ‘/ 10200 V
Max [10200 ~
[&pply to preferences Apply] [ak. I [Cancel

figure 121: ibaPDA Express: Display settings

13.1.10.7 Scientific notation

Q "Auto"

d "Always"

QO "Never"

Option Explanation

Auto Depending on the size of the scale values (hnumber of places before or after the decimal
point), the scales are labeled in scientific notation (power of 10) or not.

Always Scale values as power of 10

Never Scale values always with digits before and after the decimal point

i85 Issue 4.2.4 227

Manual ibaLogic-V4

13.1.10.8 Scaling mode

13.1.11

4 "Auto scale"

Q "Dynamic auto scale"

U "Dynamic auto scale" (increase only)

4 "Manual scale"

Option

Auto scale

Explanation

Default setting; when displaying one or more graphs, the Y-axis of the strip is scaled
once in accordance with the lowest and highest of all values occurring (when
involving a signal).

Dynamic auto scale

When you enable this option, the scaling is continuously adjusted with the highest
signal amplitudes. If the amplitudes go beyond the signal strip again, the scaling is
further reduced.

Dynamic auto scale
(increase only)

When you enable this option, the scaling is continuously adjusted with the highest
signal amplitudes. If the amplitudes go beyond the signal strip again, the scaling
remains unchanged.

Manual scale

You can specify the starting (Min.) and end (Max.) value of the scale manually when
you select this option. (Visible only when the dialog box is opened from the context
menu in the signal strip, and not with the presets.)

Extended Functionality

You can enable the extended functionality using the icon in the title bar from the context

menu.

The following functions are available:

Q "Toolbar"

d "Signal Tree"

3 "Fullscreen-View"

The display of the ibaPDA Express gets extended when you select the menu.

=7 ibaPDA Express 1.5.13.0 [localhost]

L : k Toolbar
i Signal Tree
Fullscreen-Yiew

Move

Size

Minimize

5000
40

T
20

T
-10

a

T

a

T
=20

_5000

25 o s
:
a

1541:20 13:41:30

15:41:40 13:41:50

figure 122: Context menu "ibaPDA Express"

228

Issue 4.2.4 m

ibaLogic-V4 Manual

Toolbar
LD Sl B B

It displays a toolbar having the following elements:

Icon Name Explanation
ft Modify presets Opens the properties menu.
sl
D @ Real time Start / Stop function of all strips.
ap
Add trend graph Add another trend graph
e trend graphs can be arranged as desired by holding the
K| The trend h b d as desired by holding th

"Trend graph" bar with the left mouse button and moving it.
The docking points become visible.

P AT Add QPanel Add supplementary functions QPanel, scope view,
gﬂ -uEE digital meter to Express.

Add scope view
Add digital meter

Load view Open an ibaPDA Express configuration as an XML file.
I. -1 Save view Save an ibaPDA Express configuration as an XML file.

Signal tree

Displays a tree view of all variables contained in the program. These can be placed in a
trend graph using Drag & Drop or by double clicking.

Full screen view

ibaPDA Express is displayed in full screen mode. You can exit this mode by pressing
the <F10> key.

Other Documentation

You are requested to refer to the appropriate add-on documentation of the ibaPDA
system for the description.

Issue 4.2.4 229

Manual ibaLogic-V4

13.2 Time behavior
Depending on the platform, ibalLogic provides a deterministic Time behavior (Real-Time
behavior).
Platforms:
Q Windows XP/7:
non-deterministic, relatively stable cycle times for task times of =2 5 ms.
Q PADU-S-IT:
deterministic, very stable cycle time for task times of = 1 ms.
The tasks of ibaLogic have a base time slot of minimum 1 ms, and this is based on the
interrupt time base, which can be configured under the "Tools /O configurator" menu.
This is the minimum task interval.
You cannot have faster tasks. It is possible that certain iba modules sample data at 50
s and forward these as an array of values (Packets) to ibalLogic. ibalLogic then
processes the values in the secondary clock cycle. Further information, please refer to
.Buffered Mode, Page 192".
For the purpose of task handling, ibaLogic logic checks the tasks pending for
processing at the basic clock cycle configured, and enters these in an internal task list.
This task list is evaluated cyclically from the top to the bottom and tasks evaluated are
removed from the list.
It must also be noted that the basic clock cycle configured is also the clock cycle in
which inputs can be read and outputs can be written.
IbaLogic knows only the interval task.
The interval task is started in accordance with the time interval configured. The
program linked with it has its own evaluation time.
4 N
—> — —
®
. S
A Interval
B Evaluation time
figure 123: Interval task
230 Issue 4.2.4 i8]

ibaLogic-V4 Manual

13.2.1

13.2.2

Evaluation time

The program evaluation times of various programs in the entire user project is also
important for the consideration of the Time behavior.

ibalLogic provides the evaluation time for various interval tasks to the user to check the
system loading as a number and as a bar.

—

In this example, considering a 1 ms interval task, the percentage value means that
34.36 % of 1 ms is required. This means that this value is a percentage of the time slot
configured for the task. 34.36 % for a task time slot of 1 ms works out to 0.3436 ms of
CPU time for the program.

Turbo mode

In order to prevent ibaLogic from getting temporarily blocked by Windows, you can
assign one processor core to ibalLogic exclusively in multi-core systems.

Note

In order to ensure flow and performance as deterministic as possible, iba
recommends:

U For task times < 20 ms:
Use an iba interrupt source
(ibaFOB card or similar)

Q For task times <5 ms:
Use the turbo mode

Tip
The Time behavior can also be controlled with the help of compiler options using the
"Tools - Options - Runtime options" menu.

Qa "Size:"
Default setting, interpreter mode (UCODE)
with ST breakpoints possible

Q "Both:"
Interpreter mode and native code mixed,
no ST breakpoints possible

Q "Speed:"
only native code, no breakpoints, and not all LREAL functions are
available (e. g. all exponential functions)

In addition, ibalLogic differentiates between the "Measurement" mode and the "Soft
PLC" mode. Settings see "General Settings, Page 180".

Issue 4.2.4 231

Manual ibaLogic-V4

13.2.3

13.2.4

Messung

This operating mode ensures that ibalLogic does not lose any input sample. This is also
true when individual tasks within ibaLogic need to be suspended. The runtime system
of ibalLogic ensures that the data are made available equidistantly in the task interval
configured. If tasks get suspended, the system makes up for the cycles. As a result,
with task suspension for limited time, it may happen that ibalLogic, at times, evaluates
only those values that belong to the "past".

Nonetheless, it is always ensured that, for example, values that are equidistant and
correct are available for FFT analyses. Permanent suspension or blockage leads to
buffer overflow. Such customization is not acceptable.

You must make considerations regarding the modes of operation possible for reading in
the hardware signal inputs.

In the "Measurement" mode, the hardware input signal status is buffered in accordance
with the task interval configured. The program then works with the oldest buffered value
when it starts next. This means that the "Soft-SPS" mode and the "Measurement"
mode work the same way when the program processing times < the interval time. If the
processing times are greater, you have buffer overflow of the sample values in the
"Measurement" mode.

- N

1 ms Task

. ¥

B Evaluation time

figure 124: Buffer overflow — Shifts

Example: The dark green 1 ms clock cycle saves the value that is processed when the
task begins (light green). The black arrow indicates the sampled value with which the
task works and how the buffer overflow condition develops. The evaluation time of a
task is more than 1 ms, and hence, there is a time shift.

Soft PLC

In this operating mode, which is suitable for control and regulation tasks, ibalLogic
ensures that only the latest signal states are processed. In contrast to the
"Measurement" operating mode, it does not matter here whether samples get lost or
not. On the other hand, it is desired that current data, as far as possible, that is, data
from the latest I/O transfer cycle is available.

Data is read in from the input resources with every cycle before executing the first task.
The aging time of the resources is determined by the base cycle of ibalLogic that is
configurable. If, for example, this base cycle is 10 ms and the first task is configured
with a cycle of 50 ms, this task finds input data that is definitely not older than 10 ms.
The data can, however, be newer.

232

Issue 4.2.4 m

ibaLogic-V4 Manual

13.2.5

Output values are written in both modes by each task in the cycle at the end of the
required task evaluation time, provided output resources have been included in the
plan.

In the "Soft PLC" mode, the current hardware input signal status is read in and
processed at the start of the task.

Time considerations with multiple tasks
4 N

TaskA: Prio 1
TaskB: Prio O

ibaLogic @ @

. J/

figure 125: Evaluation without overflow — 2 tasks having different interval time and priority

g -

The 2 rows above represent the individual tasks in the theoretical evaluation sequence
if they were to run independently. The numbers are a counter for triggering the tasks
(1st trigger, 2nd trigger...).

An interval task A having an interval time of 5 ms is displayed in the uppermost row.
The priority is 1, i.e. of lower priority compared to the 10ms task B having priorityO
(second row). The width of the bar (impulse) is equivalent to the evaluation time of the
task of the associated program. The background represents a clock cycle grid. The
impulse always begins at the interval time set.

Practically, however, the tasks are executed "serially". This is illustrated by the
lowermost row. At the starting time point, ibaLogic sees the tasks that need to be
evaluated, and evaluates them one after another in accordance with the priority
entered. First, task B, since it has the higher priority, and after its evaluation time, the
task A...

To clarify the actual situation, the program evaluation times shown are taken to be very
large. In reality, the evaluation times are primarily of the order of us, so that, for
example, 20 tasks can be evaluated in 5 ms without a problem (empirical value).

Issue 4.2.4 233

Manual ibaLogic-V4

13.2.6 Worst-case considerations
If you assume a longer evaluation time for task A and task B, suspension or time shift is
generated. Suspension or time shift means that the task is no longer started at the
expected time point, since another program is still being evaluated. The task with the
higher priority is started at the correct point in time.
4 \
TaskA: Prio 1
\ S
figure 126: Task evaluation with time shift (suspension)
The evaluation times have been selected in such a manner that both tasks together
require more than 5 ms, and hence, task A cannot be started at the exact time interval
foreseen. If a base cycle of 1 ms has been configured, a check is conducted at each
cycle to see whether a task needs to be triggered. In the example here, task A (5 ms,
priority 1) and the task B (10 ms, priority 0). These are entered in an internal list
according to their priority and then started.
13.2.7 Explanation of the case above
The jobs of the internal list are illustrated in the figure "Task evaluation with time shift -
Excerpt".
At the outset, ibalLogic sees that task A (5 ms, priority1) and task B (10 ms, priority 0)
need to be executed and enters them in the internal job list according to their priority.
Tasks that have been started are removed from the job list, new ones are added, and
this is how the above figure emerges.
4)
TaskA: Prio 1
TaskB: Prio O
Jobs
N y
figure 127: Task evaluation with time shift — Excerpt
234 Issue 4.2.4 i8]

ibaLogic-V4 Manual

13.2.8

Task evaluation with time shift

Let us assume that task A has been configured with an interval time of 2ms (with the
same program evaluation times), in which case, certain cycles are lost.

r
TaskA: Prio 1
TaskB: Prio 0
ibalogic
_ J

figure 128: Task evaluation with time shift

A different picture emerges if the priorities are interchanged.

r
TaskA: Prio 0
TaskB: Prio 1
ibalogic
\ S

figure 129: Task evaluation with time shift (reversed priority)
Another consideration is the "Soft PLC" mode and the "Measurement" mode.

In the "Soft PLC" mode, the hardware inputs are always read at the beginning of the
task (x point in the following figure).

- \

TaskA: Prio 1
TaskB: Prio 0

ibalogic x
J/

figure 130: Hardware inputs in the "Soft PLC" mode

.

The situation in the "Measurement" mode is different.

s A
TaskA: Priol X o

TaskB: Prio 0 X)
J/

ibalogic

\.

figure 131: Hardware inputs in the "Measurement" mode

Here, the input signals are buffered in time, but are evaluated with a delay in case of a
time shift or task suspension.

Issue 4.2.4 235

Manual ibaLogic-V4

Important Note

In general, there is a time shift or task suspension if the sum of the program evaluation
times exceeds the smallest interval time used. There is buffer overflow if this time shift
is permanent. The programs and the computer no longer work in line with the
requirements. In case of temporary time shift or task suspension, it depends on the
respective application whether this can be tolerated.

Data is written to the hardware outputs in the next base clock cycle after the evaluation
time has ended. Hence, it may be meaningful to configure the base clock cycle to be
faster than the task interval. If, for example, the evaluation time is 50 ys, the task
interval time is 5 ms and the base clock cycle is 1 ms, data is written to the outputs
after 1 ms.

236

Issue 4.2.4 m

ibaLogic-V4 Manual

13.3

13.3.1

13.3.1.1

13.3.1.2

13.3.1.3

13.3.1.4

Debugging
The following errors may occur:
U Program errors

Q Compilation errors

Program errors

Frequently occurring errors in programs:
Q Errors in user-defined function blocks
Q Division by 0

Q Incorrect signal trends

Q

Incorrect evaluation order or sequence

Errors in user-defined function blocks

In order to trap logical errors, ibalLogic-V4 provides you the option of setting so-called
"Breakpoints" in the function blocks, so that you can check the execution of your ST
code. For more information, please refer to "Structured Text Editor, Page 126".

Division by 0

If the following message appears in the event window, it means that division by 0 has
occurred.

"Exception: OnlineServer: PMAC Status: Division by Zero in
program. functionblock, Offset 0x0022, Stack 0x0001"

The message indicates the location at which the division by 0 has occurred. In the
example given above, the error has occurred in the function block "functionblock" in the
program "program".

Incorrect signal trends

In order to be able to check evaluated values, ibalogic-V4 provides the tool
ibaPDAExpress. You can display the signal trends in real time with the help of this tool
and thus, track whether your block is yielding the expected output values with various
input parameters.

Evaluation sequence

If, in spite of error-free function blocks and macro blocks, the evaluation does not run
as you expect it to, it is possible that the problem lies with the evaluation sequence.

In order to check the blocks that are evaluated first, you can view the evaluation
sequence of the corresponding program and thus, unearth any errors in the sequence.

For more information, please refer to "Evaluation sequence, Page 60".

Issue 4.2.4 237

Manual ibaLogic-V4

If your program contains feedback paths, it is necessary to know the block that is in the
first or last position in the evaluation sequence.

13.3.2 Compilation errors

Although the syntax of the ST in the user-defined FBs is checked by the block
generator prior to compilation, it may happen under certain circumstances, that
compilation of the IL code generated fails.

In such a case, you receive an error message in the event window that indicates this.

If there is a message in your event window that appears as follows, please scroll up
using the slider on the right border until you can see the first error message.

Example:

1 [01.03.2010 14:19:14] [<Computername>] [ibalLogicClient] Info:

2 Generation started...

3 [01.03.2010 14:19:14] [<Computername>] [ibalLogicClient] Info:

4 Compilation started...

5 [01.03.2010 14:19:14] [<Computername>] [ibalLogicServer] Info: TIMER

6 Generation: Ticks since start of IL generation: 31, that is 0,03
seconds

7 [01.03.2010 14:19:15] [<Computername>] [ibalLogicClient] Exception:
8 IL compilation failed: Compilation ended with errors.

9 [01.03.2010 14:19:15] [<Computername>] [ibalLogicServer] Info:
10 Building resource C:\Documents and
11 Settings\<Benutzername>\Application

Datal\ibaLogic\NewWorkspace\NewProject\$SENVS$\Resource\Resource.MAK.
12 C:\DOCUMENTS AND SETTINGS\<Benutzername>\APPLICATION
13 DATA\IBALOGIC\NEWWORKSPACE\NEWPROJECT\CustomTypes.typ
14 C:\DOCUMENTS AND SETTINGS\<Benutzername>\APPLICATION
15 DATA\IBALOGIC\NEWWORKSPACE\NEWPROJECT\FB_STRINGOUT.POE(3,5,2): E:
16 S3023: Invalid operand type for this operation.
17 1 error(s), 0 warning(s) -
18 C:\DOCUMENTS AND SETTINGS\<Benutzername>\APPLICATION
19 DATA\IBALOGIC\NEWWORKSPACE\NEWPROJECT\FB_STRINGOUT.POE.
20 C:\Documents and Settings\<Benutzername>\Application
21 Datal\ibaLogic\NewWorkspace\NewProject\T00 INPUT.POE (2,9,14): E:
22 S3026: Undeclared identifier.
23 C:\Documents and Settings\<Benutzername>\Application
24 Data\ibaLogic\NewWorkspace\NewProject\T00 INPUT.POE(3,2,6): E:
25 S3005: This is not a function block instance.
26 3 error(s), 0 warning(s) - C:\Documents and
27 Settings\<Benutzername>\Application
28 Data\ibaLogic\NewWorkspace\NewProject\T00 INPUT.POE.
29 3 error(s), 0 warning(s).

If compilation fails, always begin with the first error message that appears in the event
window.

238 Issue 4.2.4 m

ibaLogic-V4

Manual

In order to be able to find the errors, please proceed as follows:

Q

Q

Q

Enlarge the event window so that the events starting from "Compilation
started" are displayed.

Look for the first message that contains an error. The other messages are possibly
errors as a consequence of the first error. In the example given above, it is the
message

"C:\DOCUMENTS AND SETTINGS\<Username>\APPLICATION
DATA\IBALOGIC\NEWWORKSPACE

\NEWPROJECT\FB_STRINGOUT .POE(3,5,2): E: S3023: Invalid
operand type for this operation"

Copy the path in which the erroneous block is located to the clipboard and insert it
in the address line of Explorer. In the example given above, this is "C: \DOCUMENTS
AND SETTINGS\<Username>\APPLICATION DATA\IBALOGIC
\NEWWORKSPACE \NEWPROJECT"

You will find the erroneous block there, in our case "FB_ STRINGOUT . POE". Open it
using an ASCII editor that displays the line numbers, e. g. NotePad++.
You see, for example, the following program code (Example given above)

FUNCTION BLOCK FBistringOUT
VAR INPUT
il : INT;
END VAR

1
2
3
4
5
6 VAR OUTPUT

7 ol : IBA STRING;

8 END VAR

9
10 (** ol := 'TestString' + int to string(il); **)
11 (* assign - Stmt *)
12 LD 'TestString'
13 ADD (il
14 int to string
15)
16 ST ol
17

18 END FUNCTION BLOCK

At the end of the block, you see a set of three numbers, e. g. (3,5,2).
This indicates the following:

1st number: Region in which the error has occurred.

1 = Program name / FB name/Function name
2 = Variables range, begins with "VAR"
3 = Program, begins after the last END_VAR

2nd number: Line number within the section

3rd number:

Column number (or tab number)

(Line 1 above)
(Line 2 above)
(Line 9 above)
(5 is equivalent to line 13)

in the line (2) concerned

U the erroneous line is thus "ADD (i1 ...

Search the last comment line above this statement. In this, you can see the source
text of the ST statement
ol := 'TestString' + int to_string(il);

Issue 4.2.4 239

Manual ibaLogic-V4

Q The error is the following: The ADD operand is not permissible for strings.
Possible cause: in other compilers, e. g. in ibaLogic-V3, you can combine strings
with '+'. The ibaLogic-V4 compiler always interprets '+' as addition. In order to
append strings to one another, please use the CONCAT function.

Q The correct statement for ibalLogic-V4 is:

1 vl := int to string(il);
:= concat ('TestString',vl);

N

o

iy
Il

Sometimes you can get more information from the "CompilerOut.txt" file, which helps
you to eliminate the error.

The "CompilerOut.txt" file is located in the following folder in Windows systems:

QO German system
C:\Dokumente und Einstellungen\<Benutzername>\Anwendungsdaten
\ibalogic\<Workspacename>\<Projektname>\$GENS\

Q English system
C:\Documents and Settings\<Username>\Application
Data\libalogic \<Workspacename>\<Projektname>\$GENS\

13.4 Performance Limits
ibaLogic-V4 has been developed for the 32 bit variant of Windows and has certain
limitations on account of its architecture:
0 Maximum RAM size: 4 GB
Q Maximum process size (i. e. memory that a runtime system can occupy)

= For WinXP platform: 2 GB
= for the PADU-S-IT platform: 32 MB

The Microsoft SQL Server 2005 Express used by ibalLogic-V4 has the
following system-bound performance limits:
Q Maximum database size: 4 GB
Q0 Maximum 16 instances on the same machine
Q Support for only 1CPU and 1GB RAM
Moreover, there are limitations resulting from the compiler used that is integrated in
ibalLogic.
This has a maximum segment size of about 64 kB. This means that you cannot define
as many variables as you please within a block (function block or macro block).
Nonetheless, if you exceed the permissible limit of 65292 bytes, an error message is
output.

13.41 Example
You have an array of 8,158 LREAL elements, and each of them occupies 8 bytes,
which means that you occupy 65,264 bytes with this array in a function block, plus the
array header of 12 bytes, that is, 65,276 bytes.

240 Issue 4.2.4 i8]

ibaLogic-V4 Manual

You can provide the function block with only one input and one output that occupies
only 4 bytes, so that you do not exceed the set limit. Since the header of the FB also
occupies another 8 bytes.

Element Bytes

FB Header 8 Bytes

Array Header 12 Bytes

Array [0 ... 8157] LREAL 8158 * 8 Bytes = 65264 Bytes
Input i1 (DINT) 4 Bytes

Output o1 (DINT) 4 Bytes

Total 65292 Bytes

The remaining 244 bytes are required by the compiler for administrative information.
The following figure illustrates the structure of the data segment in a simplified form.

1 Administration

2 FB Header

3 Array Header

4 Array
(5) 5 Input
© 6 Output

. A

figure 132: Data segment(64KB)

You can create up to 600programs / tasks within a project, but this is rather a
theoretical limit considering grounds of clarity.

The number of projects within a workspace is limited only by the maximum database
size on the server.

If you use another SQL server, you can learn about the size specification from your
system administrator.

Issue 4.2.4 241

Manual ibaLogic-V4

14

14.1

Programming rules

Every programming system has an underlying risk of the programming being done in
an unstructured manner, and hence, the outcome that the program is very difficult or, in
fact, impossible to comprehend for you as a programmer as well as for the customer or
any other person working with the system.

SYSTEM_UTG TivE)]

1~ HIMI_Meidun.

figure 133: Example of unstructured programming

The example in the figure given above is restructured for the recommended solution.

Approach for the solution
Two tasks having the following structure:
U Task 1 Data generation

Q Task 2 Data processing

gl
|
\

figure 134: Example of structured programming

You do not have to comply with the following guidelines, but however, they simplify
working with ibaLogic.

Q Distribute the functions across multiple tasks / programs having illustrative names.

Frogram Designer - Project_Ethic (hot active)

i

figure 135: Division of tasks / programs

| T_02_Processing

242

Issue 4.2.4 m

ibaLogic-V4

Manual

U Create one task each for the hardware inputs and the hardware outputs. Assign the
priorities in such a manner that the input task is the first and the output task the last

to be processed.

Q Use intra-page connectors within a task, if too many intersections of the lines make

the layout cluttered

Q Tag the sub-functions using comment fields.

enmrme Timsbess

STETEM UTe MEr

gmnerme S
P
v =
ooy Smusz
e

T

figure 136: Comments

CENERATER,1 DUy e St

B e OTC iz

U4 Merge reusable program components into macro blocks and create meaningful
description and comments for them.

Q Combine complex connections pertaining to a function into a macro in order to

improve overall clarity.

U Use comments and descriptions even within an FB. We recommend a header with
a change index, titles and meaningful indentations of the program lines.

Edit Function Block

General
Definition name: [FB_analysis

Descrption

Instance name: [}

HOTbot e 3 3| Numberchvaisbles: B [3)
Brguments :
g || T b - B
Varlable type
Index Data type Hame Defaul Description
N -
1 REAL iSinus1 0.0
2 REAL iSinusZ. 0.0 r E
3 STRING Time
4/ INT Para_Cyle 0
= Wariable type: Output
1 REAL oSinust_rectyfied 0.0
2 REAL oSinus2_rectyfied 0o v

Fread writs i@

Structured Text

il
]
9
i

= o0 TZ.0a.2010 T

ST GESLgi

v
] (+ o1 14.02.2010 wzp Errorcorrection inalysis &
10 (=
ot
1z R create Supervision period
13 Evaluate:= FALSE; (* Evaluate only for one cycle
14 if Cycle act <= 0 then i* End of Supervisiontime or first run
15 cyele act:= Para Cyle; (* set supervision cycles F
i6 < »

figure 137: Program code comments

O Arrange the blocks within a task in such a manner that they match the evaluation
sequence (from the top left to the bottom right).

Issue 4.2.4

243

Manual ibaLogic-V4

Q Designate off-task connectors with a prefix, e.g. "OTC_" or, if the OTC is used for
an HMI system, with "OPC_".

Q Designate the intra-page connectors with the prefix "IPC_". If an "OTC_test" is
present as an input, it can continue to be used internally as "IPC_test" and there is
no repetition of names.

O Configure short prefixes for the names of blocks, macros and their connectors, e.g.
IIFB_II, IIMB_II-
(Setting under "Tools — Options — Editors — Function Blocks").

Q Assign names to user-defined data types such that they give an indication of the
logical meaning (e. g. ST_ROLLING) or the contents (e. g. AR_64REAL).

Q If necessary, move the lines in such a manner that you can trace them clearly. Avoid
any overlapping.

Q Utilize the option of enlarging the blocks as desired. In doing so, connector names
become more legible or the lines are easier to trace.

FB_Analysis_1

I 'y s oSinus T_ractyfied
OTC_Sinus1_rectyfied|
OTC_Sinus2_rectyfied | . -
oSinus2_rectyfied
e
MyTime[
Para_Cyle B (3 e
Smoocthing the signal
PTIS
Fi(G [=X
T
F8_Analysis_1
OTC_Sinus1_rectyfied| i Sinus1 oSinusT_reatyfied
OTC_Sinus2_rectyfied| I iSinus2
oSinus2_rectyfisd
= Time

MyTime[;
l Para Cyle BAS1US [—

figure 138: Examples of enlarged display

Q In general, trap possible sources of error while programming, such as:
= Division by 0
= Access beyond the array limits

= Possible endless loops

244 Issue 4.2.4 m

ibaLogic-V4 Manual

15

Uninstall ibaLogic

A DANGER

During uninstalling, various messages can occur:

O Query whether the user backups are to be deleted, too.

Q Query whether SQL Express is to be uninstalled, too
(only occurs if the ibaLogic database existed exclusively).

A DANGER

Danger by enabling or disabling functions!

Possibility of human injuries and damage to machinery by enabling or disabling
functions and other services (PMAC, OPC ...), which have a direct impact on the
response of the system.

Secure the system while working on it!
Follow the safety regulations applicable!

Important Note

Only those users having administrator privileges can uninstall ibalLogic software.
Please ask your system administrator.

Prerequisite
4 All ibaLogic programs are closed.

Note
Messages during uninstalling

SQL Express Instance is removed by confirming the prompt with <Yes>. The database
created during installation is deleted (*.Idf, *.mdf).

Issue 4.2.4 245

Manual

ibaLogic-V4

Procedure
1. Select "Start — iba — ibaLogic v4 — uninstall ibaLogic".

Rl ba Y ibaPDA

() Imgeurn () ibasnalyzer

1@ mar [ibabatCoordinater

() microscft Office () ibaanimationsD

(7 Microscft Sitverlight M@ ibal ibaLogic Client

[Microsoft SOL Server 2005
7 Microscft Yisual C-++ 2008 Express Edtion
(7 Mozills Firefo

() mysaftplus

() NETWORK

7 oFFICE

(@) siverfrost

(7 Skype

(@ snagit7

(@ startup

@ TooLs

[Trend Micro Client-Server Security Agent
[videalAN

AllPrograms B | [niRITGS

7J start

ibalogic Handbuch
ibalogic Server

ibaPDAExpress Manager

% &8 E

ibaPDRExpress Standalane

rogram Files\bajbaLogic v

Chooge Components =
Choose which Features of ibaLogic you want ta uninstall, Lﬂ

Check the components vou want to uninstall and uncheck the components you don't want to
uninstall, Click Next ko continue,

Select components to =] o
uninskal: —
balogic settings -

windows firewall entries =

PR PR b

Drescription
Space required: 0.0KE ; -

3. Start the uninstalling by pressing the <Uninstall> button.

bal ogic Uninstall

Uninstall ibalLogic
Remove ibaLogic from your computer.

ibaLogic will be uninstalled From the Following Folder. Click Uninstall ta start the uninstallation,

Uninstalling From: | Ct\Program Filesiibaijbalogic w4

< Back |[Uninstall | [Cancel

246

Issue 4.2.4

ibaLogic-V4 Manual

4. Close the dialog box by pressing the <Close> button.Confirm any confirmation
prompts if required.

™ ibal ogic Uninstall: Uninstalling

Uninstall ibalogic =
Remove ibalogic from your computer, Lﬁ

Execute: "C:\Program Fileslibalibalagic v4\serveridbsetup exe” fmode: Clean fdb:LOGICHET §

(T]

Important Note

If there are any database backup copies in the installation folder, you are asked during
uninstall whether these should also be deleted. If you confirm with <No>, the backup
copies remain.

™ ibaLogic Uninstall

9P
"‘""qj Do you also wank to remove your backups?

[fes] ’ Mo

@ Issue 4.2.4 247

Manual ibaLogic-V4

16

16.1

Practice Examples

The aim of this section is to accompany the "Beginner" with the first steps in using
ibalLogic.

It is intended that a small sample program generates the "Aha Effect" and, above all,
demonstrates what iba understands of ergonomic CFC implementation, and what
meaning is given in the process to online update of static and dynamic variables.

Since this is merely an introductory example, it does not illustrate or deal with all
functions of ibalLogic.

First Steps - Sample Project

The task is to create a program with which a sinusoidal signal is generated. A smoothly
adjustable offset should be added to this sinusoidal signal depending on the status of a
switch. You can create the example completely with the help of standard function
blocks. Nonetheless, in order to be able to explain the highly flexible programming
opportunities and features of the integrated programming language, "Structured
Text" (ST), the example should also be programmed using this alternative.

The input signals and the result need to be displayed as trend graphs.

The sample program is made "live" so that the connectors used are updated
continuously. The change of color to pink indicates that everything is now "serious":
The plant is virtually live!

If outputs are already connected (Actuators, motors, etc.), these would respond
immediately to the program modifications. The customary procedure - programming,
compiling, linking and loading, as well as starting - runs automatically in the
background. Moreover, for the sake of simplification, the preset values for the project
and program names are accepted.

248

Issue 4.2.4 m

ibaLogic-V4 Manual

16.1.1
16.1.1.1

Sample Exercise Part 1

Task Description

The periodically changing value of a generator (Sinusoidal signal) needs to be added to
the value of a slide controller depending on the status of a switch:

Switch position 1: Generator + Generator
Switch position 2: Generator + slide controller

All variables and, of course, even the result needs to be displayed in a graphics format
as a trend curve.

generator

l Iif\\ f \\f

8 1
switch result

slider

figure 139: Circuit diagram of the sample exercise

In the first part of the exercise, the example should be implemented with the help of
function blocks (FB) that are available as standard blocks in ibalLogic.

Since laboratory equipment such as a function generator, slide controller and keys do
not have to be connected to the inputs of ibalLogic, such effective functions have been
compiled as Specials and can be placed like other blocks. You can perform active
operations on the Switch and the Slider to test the circuit.

Issue 4.2.4 249

Manual ibaLogic-V4

16.1.1.2 Start ibaLogic Server and ibaLogic Client

Procedure

1. Double click on the "ibaLogic Server" icon on the desktop.
The ibaLogic Server dialog box opens after the initialization phase. By default, the
server is started automatically when the dialog box opens.

" ibalogic Server 4.2.4 E”E”’S__(I

Server [Database Tools Help

D atabaze Server: LOGICA-PCAEBA

Started e - W -

2. Double click on the "ibaLogic Client" icon on the desktop.
The ibalLogic Client dialog box opens after the initialization phase.

E¥ ibaLogic Client 4.2.4 [LOGIC4-PC]

File Edt view Evalustion FunctionDiagram Tools Help

i @new - GlOpen | - g | R L & Current Platform; - @ el

\workspace Explorer Program Designer
el | @] 3 [34] x
Events =

[11421/201 2 2:56:45 PM,5687] [LOGIC4-PC] [ibaLogicServer] Info: iba Logic Server started
[11421/2012 2:56:50 PM,9594] [LOGIC4-PC] [ibaLagicServer] Info: PMAC started

8 Workspace Explorer

¥ Inputs-Outputs
8 Function Units
i DataTopes

1= Instances

12 Definitions
i Hierarchy
1 Evaluation Order
Local events Server events All events | Console view
Remarks

The event window below the program window documents the program actions and
collisions, if any. If error messages pop up during the startup of the server or the client,
please refer to this documentation for assistance.

250 Issue 4.2.4 m

ibaLogic-V4 Manual

16.1.1.3 Create a New Project

Procedure

1. Press the <New> button in the toolbar.
The "Add Workspace" dialog box is displayed.

Add Workspace
otk space
M arme: ;.NewWorkspace'I
Description: |
Project
Mame: MHewFroject]
Description: |
Program

Mame: | NewProgram

Description:
Task
(%) |mterval 503 ms
Priari: | 02| 0 Higpest prioriy

[0K] [Cancel

2. Confirm the entries with <OK>.

When you do not change the presets, your project is called "NewProject1" having just
one program "NewProgram". The preset interval time of 50 ms is adequate for the
example.

Remark

If, after beginning your exercise with ibalLogic, you have had to interrupt the "Session"
or you have simply closed all programs (first the client and then the server), you do not
have to begin with <New>.

Your changes are saved automatically.

When you continue in such a case, press the "Open" button, open the workspace you
created and continue working at the position where you have stopped.

i85 Issue 4.2.4 251

Manual ibaLogic-V4

If you have several workspaces, the search function can be limited by the "Modification

Date" field.

Open Workspace
Workspace name D ate created D ate modified Created by
Mewhworkspace 0211.2010 144646 11.02.20017 10:47:21 MaM_SCH145
Mewhwarkspace] 1611.201016:1 016 11.02.2011 11:59:02 A0 3c7efbbfde

)4 l [Cancel

16.1.1.4 Placing the Test Tools
One function block each is required for the task description:

4 "Generator"

 "Switch"
Q "Slider"
Procedure

1. Click on the <Function Units> button. A folder tree opens in the navigation area.
2. Open the "Specials" folder.

3. Drag one "Generator", one "Slider" and one "Switch" to the design area of the
program designer keeping the left mouse button pressed.
If, in the process, you come too close to a block that is screened, a superimposed
shadow indicates its "Sphere of intimacy" in which no other block should be placed.

252 Issue 4.2.4 @

ibaLogic-V4

Manual

£¥ ibalogic Client 4.2.4 [LOGIC4-PC]
Fil= Edit View

P @ new - Slopen | WStat Uodate -

- NewWorkspace

Evaluation Function Diagram Tools Help

=4 Zoom In ‘=4 Zoom Out 100%
BN 5

Function Units

:rJ_J SIGMNAL_PROCESSING e

=1 SPECIALS

4.3 DISCONTINUED

[7] DAT_FILE_WRITE

(] evaLTIMES

(] FUZZY_CONTROLLER

(1] GENERATOR

7] GET_TASK_INFO

(] sHOWSTRING

(] sucer

(1] swiTcH

-3 TIMER
43 TYPE_CONVERSION

B NewProjectl

Program Designer - NewProject

| 1
G |

4. Arrange the blocks in the proper sequence.

16.1.1.5 Placing the evaluation blocks

SWITCH_1

SUDER_1
LowW
HIGH v

GENERATOR_1
GENTYPE
AMPLITUDE
OFFSET OUT
PERIOD

PULSE

One function block each is required for the task description:

 "Selector"
4 "Adder"
Procedure
1.

2.

ouT
ouT

Open the "Selection" folder in the directory tree of the navigator.

Drag the selector (SEL), keeping the left mouse button pressed, to the design area

of the program designer.

EZ ibal ogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File Edit Wiew Evaluation FunctionDiagram Tools Help
: [linew - cllopen | start Bl oioe |RzZeomIn Rzoomont 100% @ & - | Current Platform: Default
lF—unqiwn Units Program Designer - NewProject
4.0 EDGE_DETECTION & J 1
@21 REGISTER
=-{8 SELECTION
w[F] LiMIT
-(E] Max SWITCH_1
-E] Min
[0 MU VAL w:::uv
] SEL=
- SIGMNAL_PROCESSING
=+ SPECIALS seL
- DISCONTINUED ﬁm o
(0] DAT_FILE_WRITE .
..[7] EvaLTIMES SLIDER_1
(7] FUZZ¥_CONTROLLER Low out
¢ = s HIGH lout
m Warkspace Explorer
GENERATOR_1
¥ Inputs-Outputs GENTYRE
. AMPLITUDE
;4 Function Units OFFSET QUT
PERICO
r‘ Duh.TEEs PULSE
r_. Instances i

?A

Issue 4.2.4

253

Manual ibaLogic-V4

3. Open the "Arithmetic" folder in the directory tree of the navigator.

4. Drag the adder (ADD), keeping the left mouse button pressed, to the design area of
the program designer.

=5 ibaLogic Client 4.2.4 [LOGIC4-PC] - NewWorkspace

File Edit Wiew Evaluation Function Diagram Toals

: [l new - Slopen | Start

Help

| 4 ZoomIn X Zoom Out 100% - 3 | Current Plstform: Default1 = f&yjo co

Function Units

- AMNALYTIC
=-{ ARITHMETIC
4 GEMERAL

-~

LufE DIV

- (E BxPr
:-{1] FRaND

% BISTABLE
=1 BIT_STRING

<

-3 LOGARITHMIC
-3 TRIGONOMETRIC

;‘E ‘Woarkspace Explorer

- ¥ Inputs-Qutputs

:3 Function Units

ﬁ Data Types

Pragram De signer - NewProject

Q
SWITGH_1

SEL 1 ADD_1
INg

G
N0 OUT 2

INt

SLIDER_}

Low J out
HIGH IouT

GENERATOR_1
GENTYPE
AMPLITUDE
OFFSET OUT
=ER100

PULSE

1= instances
12 pefinitions
i

e

Remarks

The SELECTOR (SEL) requires a binary signal as the "Decision-maker" (Selector). The
values INO and IN1 under consideration for the selection are format-free and they
adapt themselves automatically to the data type with which they are connected.

As already described with the selector, the values to be added are format-free to begin
with. It is only the connection that is first "joined" to one of the inputs that determines
the format.

16.1.1.6 Connecting the selector block with the test tools
The following need to be connected:

O The switch output (SWITCH) OUT with the decision-making input G of the
elector (SEL).

The slider output (SLIDER) OUT with the input INO, of the
selector (SEL).

Q

The generator output OUT with the second input IN1 of the selector (SEL).

254 Issue 4.2.4

ibaLogic-V4 Manual

Procedure

1. Place the mouse pointer on the connector (OUT) of the switch and drag the mouse
pointer, keeping the left mouse button pressed, to the connector (G) of the selector.

SWITCH_1

VAL m ouF

SLIDER._ 1
LOW : ouT BEL 1
HIGH 1ouUT —_—r G
IND OUT
IN1
2. Complete the remaining connections accordingly.
SWITCH_1
VAL mOUT: | —
SEL 1
SLIDER_1 G
Low) OuUTIE I~ IND OUT
HIGH I1oUT =N

GENERATOR_1
GENTYFE
AMPLITUDE
OFFSET OUT]|
FERICD

PULSE

16.1.1.7 Configuring the slider and generator
The following need to be configured:
4 "Slider"

4 "Generator"

Procedure
1. Double click on the slider. The configuration menu pops up.

2. Set the "maximum value" of the working range to 100.0. The slider works with a

value between 0 and 100 depending on the slider position.

Index Datatype MName Default

Description

5L|Dgn 1 » [=I Yariable type: Input

O Low ouT

a HIGH e IouT o

1 REAL LOWY 0.0

HHIGH 100.0

3. Open the configuration menu of the generator.

rinirmurn value

maximum value

@ Issue 4.2.4

255

Manual

ibaLogic-V4

4. Set the generator type to sinusoidal.

5. Enter an amplitude value of 100.

Iﬁ' ﬂgumentgi Gfapl"lil:al |
L GEMEFETIDH_'I . .
GENTYPE e e
o AMPLITUDE 1 3 #generatur Type ; Cine _
OFFSET ouT | — gz : 1
D e || Ampitude 10000000 |
g PUsEg o Offset 0,00000

With this setting, the generator produces a sinusoidal waveform having a value
between +100.0 and -100.0.

Leave the period o

f the oscillations, as preset, at 10 sec.

16.1.1.8 Switch the partial connections online

The online compiler is

also activated by starting the evaluation.

U The background color of the program designer changes to pink.

U All binary connecting lines are colored depending on their status.

U The block connectors are updated continuously and displayed.

Q All connections are now "live".

Figuratively speaking, this is comparable with applying a voltage to the test circuit.

In a real-life situation, machines are controlled by ibalLogic via the outputs connected.
In such a case, the impact of "Connecting live" in the case of a program bug would be

felt drastically.

Procedure

2 Click on the <Start> button in the toolbar to start the evaluation of the sample
exercise. Confirm the prompt with <Yes>. The online properties mentioned above

get activated.

T Start - o] | 8 ZoomIn = Zoom Out 100% > @&
Pragram Designer

b iy (34 J '\

ewworkspace' (1 phgjs Q

act [

ration
rource
Task_MNewProgram (50
ogram

[Ja] [Mein]

SLIDER_1

LOwW ouT|
HIGH 1ouT

256

Issue 4.2.4

ibaLogic-V4 Manual

16.1.1.9 Testing the switch and selector

Since the selector is already connected and, moreover, the circuit is switched online, its
function can be tested immediately independent of the switch status of the input (G).
The principle of operation of the selectors is described in this manual under the
standard blocks. You can now implement these explanations in practice.

Procedure

2 Change the status of the switch by clicking on the SWITCH with the left mouse
button.

As you can see, in the switched off status (Off), the slider output (Value =43.5) is
connected to the SEL output (OUT).

- Offer e

00 | Low oUTEf 425

figure 140: Slider output (Value = 43.5) connected to the SEL output (OUT)

In the switched on state (ON), the periodically changing generator output is connected
to the SEL output (OUT).

figure 141: Generator output connected to the SEL output (OUT)

@ Issue 4.2.4 257

Manual ibaLogic-V4

16.1.1.10Connecting the adder

Connect the adder in order to complete the circuit as given in the sample exercise.

Procedure

1. Place the mouse pointer on the selector output (OUT) and drag the mouse pointer,
keeping the left mouse button pressed, to the input (IN1) of the adder.

SWITCH_1

FALSE| VAL %om | TRUE
L e
SLIDER_1 TRUE {7 G ADD_1
2

0.0]) 435 5 10,945 B 0 54541 IN1
0. LOW - OUTIE| 4 ING. OUT[3{0.945. 545 N1 o Fem

20.0 | HIGH v 10UT 435 0.545__ 117 IN1 0935 IN2

5
5

‘GENERATOR_1
GENTYRE
100.0_ | AMPLITUDE
0.0 OFFSET OUT[7:10.345. e
10.0_| FERIOD
0 FULSE

2. Place the mouse pointer on the input (IN2) of the adder, and drag the mouse
pointer, keeping the left mouse button pressed, to the generator output (OUT).
The connection point above the mouse pointer moved locks in position
automatically and forms a branch.

16.1.1.11Create an OTC to illustrate the result
In our sample exercise, an off-task connector is placed and also connected to illustrate

the result of this simple example. The OTC is called "Result".

Procedure
1. Click with the right mouse button on the design area of the program designer.

2. Select "New... — New Offtask Connector...".

Hew.., L4 @ Mew Function Block. . Chrl+Shift+F
(] | Mew Macra Block, .. CerH-Shift+
T Mew Intra Page Connector, .. Chrl-+Shift+1
T Mew OFf Task Connectar... Chrl+Shift+T
Select Al Chrl+a W Hew Comment... Ctrl+Shift+C

Show OFf Task Connectors CtrhH+-shife+35

The window "Off-Task connector edit dialog" is displayed.

258 Issue 4.2.4 @

ibaLogic-V4 Manual

3. Assign the name "Result" in the input field. All other preset values remain as they
are. Configure the data type as "REAL" and set a default value of 0.0.

The preset value as output is correct, since a value is fed to the OTC.
The objective would be the OTC, if it were to receive a value transferred from
another program via the OTC.

Edit Off Task Connector

= Name Fesult v
Description

Caonnectar Type —
() Input [target] Data type: REAL -

(%) Dutput [source) Diefault value: |00

OrC
[] OPC visible

[0k I [Cancel

4. Connect the OTC "Result" with the adder.

SWITCH_ Y

~ O
s.uEn L D01
180 FEINY Nl 10n 1 R 06,3 |

Remarks
An OTC is a key element in graphics programming.

The OTC facilitates the clarity of a project by virtue of the fact that it is distributed over
several programs that communicate with one another via OTCs.
In contrast, the inter-page connector is used within a program.

In this manual, you will also find "Programming rules". This section gives ideas about
how you can make use of OTCs and IPCs in order to avoid tapeworm programming
(entangled connections).

A highly significant communication element is the OTC for connecting with a
supervisory HMI (Human-Machine Interface) system.

16.1.1.12 Analysis of the circuit

You can control the result with the help of the dynamic display of the connectors.
However, even in this simple program running with a 50 ms cycle time, checking the
numerical results is extremely difficult.

Please pay attention to the “Sample Exercise Part 2, Page 260“ in the following.

Issue 4.2.4 259

Manual ibaLogic-V4

16.1.2

16.1.2.1

Sample Exercise Part 2

This sample exercise demonstrates the comfort of a dynamic online trend curve display
to evaluate the result.

Program analysis using the ibaPDA Express

An ibaPDA display is integrated into ibalLogic for online display of trend curves.

Procedure

< Click on the integrated ibaPDA Express in the toolbar.
This program is integrated in every version of ibalLogic at no extra cost.

~ | & baFDa Express

ibaPD4 Express

2 Move the mouse pointer to the OUT connector of the generator and drag it keeping
the <ALT> button pressed and drop it in the ibaPDA Express window.

2 Track the intermediate value selected (Generator OUT) as a trend curve display.

< Adjust the Y-axis using the <Auto scale All> button.

%% ibaPDA Express 1.5.12.0 [localhost]

Trend graph
Il @iy ° 2 -

i3]
— PARTD GENEFATOR ™ OUT (66 36577)

Tazds 11:43:51 11:43:54 11:43:57 11:44:00 11:48:03 11:44:08 11:44:09

2 Drag the intermediate values and results of interest to you into the ibaPDA Express
window.

= |f these are variables having the same scale, the vales get dragged to the
connector text of the signal already being displayed.

= If the scales are different, drag and drop the connectors into the trend curve
window and a new scale is formed.

= |n order to open a new trend curve window, pull the connector to an area outside
the current trend curve window.

260

Issue 4.2.4 m

ibaLogic-V4 Manual

2 Carry out a final check on the sample exercise by changing the switch position to
on / off. Observe the changes in the trend curve display.

%" ibaPDA Express 1.5.12.0 [localhost]

Trend graph b4
Il @®iviey 2 2

T PARTD.GENERATOR_1.0UT (-41751308)
PARTD ADD_1_OUT (-8 02617)

=

151008 1510:09 151012 15:10:15 1510118 15:10:21 15:10:24 151027

16.1.3 Sample Exercise Part 3

Improving the program clarity and readability
You can combine function blocks to macros in order to improve the clarity and

readability of a draft circuit.
16.1.3.1 Procedure
This technique is demonstrated with this small sample exercise.

2 Mark the FBs under consideration and their connecting lines with the <Ctrl> button
pressed at the same time. In this case, mark the selector and adder, and their
connecting line.

1531 {TRes

Copy ctrl+C

¥ | Delete Del
Select Al Chrl+a

Show Off-task connectors Chrl+3hift+3

Implods To Macra

Function properties

2 Click the right mouse button with the <Ctrl> key pressed, which displays the macro
menu.

2 Select the "Implode To Macro" in the macro menu.

2 Confirm the intermediate screen (Macro, inputs, outputs).

i85 Issue 4.2.4 261

Manual ibaLogic-V4

16.1.3.2 Remark

16.1.4

A macro is created. The macro created with a preset name (IMPL_MB_1) performs the
same functions as the individual blocks selected previously. However, it can be
designated appropriately for meaningful and proper documentation.

SWITCH_1

FALSE | VAL mom | TRUE
IMPL_MB_1
TRUE §[~ INPUTS

SLIDER_1
- 7.75.. a7 INPUTZ
- OUTE|47.19..[L ma OUTPUT (34 180 7. _ s 150,71/ ReSultl

] $.a7... {7 INPUT3
0| Hed vV iouT | 478 537 s INFUTS

figure 142: Macro creation

Tip
You can use the lasso method to combine a larger number of FBs into one macro.
Keep the left mouse button pressed and mark a rectangle across the desired objects.

2 Double click on the macro generated to display its contents. Some of the lines or
the FBs are placed in a somewhat haphazard manner. You can also edit in the
macro, e. g. add connecting lines that you have overlooked or only "clean it up"
graphically.

Program Designer - Praject First Steps (active)

PartC | PartG| PartD PartE

€}

B @x

INPUT1/m} TRUE SEL 2
— s

EarG
INPUTZ}47.79. e e = NG OUT 2,11
NPT —— s N y
ADD_2 2 -
e r—ésbr 3§ OUTPUTH
33,11 JIT IN OUT[34-166.2...!

INPUT4[71-83.11 831141 INZ

o Select <Back> to quit the macro zoom display.

Sample Exercise Part 4

Creating function blocks using ST

The function blocks provided as standard blocks are highly comprehensive in
accordance with the standard. Based on the experience of their own applications and,
above all, based on the suggestions of ibalLogic users, some other useful and special
FBs have been developed and included as standard blocks.

In order to demonstrate to the users the options and methods of creating special blocks
on their own, one FB has been programmed at the end of this sample exercise. As a
functional test, this new FB runs in parallel to the macro created earlier. The results
must be congruent with one another.

262

Issue 4.2.4 @

ibaLogic-V4 Manual

The IEC 61131-3 standard has given special importance to the "Structured Text"
programming language. With the help of this higher-level language, you can program
very clear and easily readable FBs along the lines of the Pascal programming

language. The ST blocks can also be ported to third-party systems.

If you come from the classical PLC world, you are already conversant with the use of

standard FBs.

On the contrary, if you are entering this kind of the controller world as an Assembler or
high-level language programmer, you would probably find it easier to deal with

Structured Text programming.

16.1.4.1 Procedure

< Select "New... — New Function Block..." in the context menu.

The "Create Function Block" dialog box is displayed.

New. ., » Mew Funckion Block. .,

Mew Macto Block,

Mew OFftask Connectar...

Select Al ChrHa Mew Camment, ..

17
t
9 Mew Intrapage Cornector. ..
2
»

Chrl+Shift+F
Ctrl+Shift+M

Chrl+Shift+1
Chrl+Shift+T
Chrl+Shift+C

Show OFf-task conneckors Chrl+5hift+3

o Enter "FB_1x" as definition name.

> Set the "Number of Inputs" to 4. Since the macro from the sample exercise part 3
needs to be cloned, the FB needs as many inputs- and outputs (4- inputs and one-

output).

Edit Function Block

General
Definition name: |
Description:

Instance name
Number of inputs: I

{0 | Arguments n='

=

Number of outputs: [172] Mumberof varisbles: [0

L

Il v ariables

Variable type
Index Data type Name Default Description

b=

1 BOOL il FALSE
2 |REAL 2 0.0
3 REAL i3 0.0
4 REAL 4 0.0

= Yariable type: Output
1| REAL ol 0.0

EEX

Read write (@

EXE)

Structured Text

[setbreakpoint || Delete breakpoint | [Continve |

JER- NN BRI

Check ST Disable Intellisense:

2 Configure the data types for the inputs and the output.

For the inputs
Q 1xBOOL

O 3x REAL

m Issue 4.2.4

263

Manual ibaLogic-V4

16.1.4.2

For the output
Q 1x REAL

Using the button you create a new variable.

< Enter a semicolon in the "Structured Text" field.

Remark
In the first approach, merely an "empty" function block is created.
The ST field must contain at least one semicolon on formal grounds.

Since the inputs and outputs have already been defined, the new FB can be added in
the layout and can also be connected in parallel to the existing macro.

2 Place the new FB appropriately in the layout.

2 Connect the new FB in parallel to the macro. In order to create the second result
OTC, copy the existing one with <Ctrl+C>. Add it by pressing <Ctrl+V>. Assign a
new name to the OTC, e. g. "Result_ST".

SWITCH_1

FALSE | VAL mour | TRUE

IMPL_MB_1

T = TRUE {[= INPUT!
= — 4779817 INFUT2 o -
00 |- Low - OUTI}47.75.. 25 20 AmnpuTaUTFUTI 1764 76.4... 1 Resultll
100.0 HIGH v 1oUT 478 8820, o[INFUTS
FB_ix_1
GENERATOR_1 TRUE jimit
1 GENRES AL19..1 1 [71 176 4. pmme 175 4._ 1] Resul{_ST
100.0_| AMPLITUDE £8.20.._
20 BE30._._pIT
0.0
a0

OFFSET OUT[Ts53.20..
PERICD
FULSE

2 You can see that the FB is not yet responding to its inputs. This still needs to be
programmed for its task.

> Double click on the slider. The "Edit Function Block" window is displayed.
You can now carry out the programming using the customary "if", "then", "else" and
"end_if" statements available in almost all high-level languages.

2 Enter the following source code (as illustrated in the below screenshot) in the
"Structured Text" field.

1 if 11 then

2 ol 1= 14 + i3;
3 else

4 ol 1= 13 + iZ;
5 end if;

264

Issue 4.2.4 @

ibaLogic-V4 Manual

&= Edit Function Block

General
Definition narme: | FB_1x

Read write .
Descriptior: | ‘

Instance name: | SYIRTE] ‘

MNumber of inputs: 4 @ Mumber of outputs: Mumber of variables: 0 ‘3

@ Arguments
< 5
[“RIl Y ariables
&
2
i) Yariable type !| |
| Index !! Diata type Mame | Default Description | Walue | -
4| = Variable type: Input
i il FALSE TRUE |
i2 0.0 0.0
'
i3 0.0 -99.61639
i 0.0 -99,61639

|01 0.0 | |-199.23277 ‘

Structured Text

Set breakpoint][Delete breakpaint M Continue J

if il then -
ol:= i4 + i3;
else
ol:= i3 + iZ:
end if;
»||
£ i1
[creckst | [pisable Intelisens= | [ok J[coes |

16.1.4.3 Result

The example begins with the inquiry of the switch status (if i1 = "TRUE" or shorter, if i1)
and adds accordingly, the inputs i4 + i3 or i3 + i2.

figure 143: Sample circuit with addition inquiry

@ Issue 4.2.4 265

Manual ibaLogic-V4

16.1.4.4 Remarks

Please also note that all variables in the block are updated online!

9 Drag the result of the ST block with the same scale into the ibaPDA Express
display.

The second red curve is congruent with the blue curve (Result from the macro). Only
the last color (blue) of curve 2 is visible. You can see from the bar displayed on the
right that there are two individual values.

%" ibaPDA Express 1.5.12.0 [localhost]

.Trend graph x
@ ° 28

— PARTG RESULT_ST (-28,
— PARTG RESULT1T (-3,

x

100 150 200
100 150 200

_|
0 0
0

5
&

200 150 -100
200 150 100

12:00:39 12:00:42 12:00:45 120048 12:00:51 12:00:54 120057

figure 144: Congruency of the results

266

Issue 4.2.4 m

ibaLogic-V4

Manual

16.2

16.2.1

DAT_FILE_WRITE Sample Project

DAT_FILE_WRITE in "Unbuffered" Mode

In the "Unbuffered" mode (Explanation see "Buffered Mode, Page 192") one data
sample is stored in each storage cycle.

Use this mode when the sampling cycle of the data to be saved matches that of the
ibaLogic task cycle. Or when you wish to save data that is generated within ibalLogic
itself.

Task: Store 8 analog values and 8 digital values from ibaLogic
Preset parameters

16.2.1.1

= Platform: Win XP

= Task interval: 20 ms

Step 1: Configure the DFW block

2 General Configuration

Asynchr. access:

Storage cycle:
Start time offset:
Save values:

Write to file:

Post-processing:

Sign the file:
Technostring:
File information:

Folder:

File name:

Sampling time:

Signal configuration

Name:

Mode:

Values:

Digital values:
Data type:

Analog values:

Disabled

10 (not relevant)

0

Enabled

Disabled (is controlled externally)
Disabled

Enabled

Empty

Empty

Choose a directory on a local drive using the browser
button, e. g. "d:\dat\ibaLogic\"

Accept the default value specified.

Specify the task interval time: ,,0,02" s

"module_01"
,Unbuffered"

1 (not relevant)
8

REAL

8

Issue 4.2.4 267

Manual ibaLogic-V4

Module definition

Mame Mode Yalues Digitals Datatype Analogs
(O Bufferad (O Unbuffered - = ~ e

Record1af1 4+ = &« + X

<2 Click with the mouse in the signal definition area. In doing so, the module is created
with 8 digital and 8 real values. The names are preset with "Digital_xx" and
"Analog_xx".
You can rename the standard signal names, e. g. to "Sine".

Mame Information Type Al |
) gt

Dighal_02 [Digital |

Digital_03 | Digital

Dighal_04 i Digital

Digtal_05 Digital

Digital_0& I Digital =

Dighal_07 Digital |

Dighal_0 | Digital

Sinus Re;l

;Qnalog 0z | Real |+

16.2.1.2 Step 2: Connection of the DFW
< End the module editor.
2 Join the connection "STORE_FILE" with the output of a "SWITCH" block.

2 Join the first measured signal, e. g. the output of the sinusoidal generator (Data
type REAL) with the input connector "DATA".

= A selection menu opens from which you can choose the module to which you
wish to connect the measured signal.

= When you move the mouse pointer to the desired module, another selection
menu opens from which you can choose the desired signal (e. g. Sine).

= Another selection menu is opened.
Select the menu option "data: REAL".

DnmnamBaremsd DAT_FILE WRITE 1
[B Wﬂ.ﬂ ,_gg'_: "":“':s SUM_VALUES_ETOR..
a o L FILE IS OPEN
GENERATOR_1 FILE INFO
ST TECHNg STRING LASTFRRIOR_CODE
AMPLTUDE PROOMMAND |
OFFSET QUT o> : ey : =
PERIOD DEW 6342490202 76875000 Data members iGN _FLE
e DFYY_6342490202 5000_Data memb o FILE IS SIGNED
module_o1 3 |
‘ Sinus 3
Analog_02 ’
disable: BOOL &
Analog_03 3
data:REAL ‘ &
T Analog_04 2
Analog_05 3

figure 145: Measured signal assignment

268 Issue 4.2.4 m

ibaLogic-V4 Manual

16.2.1.3

Note

Do not let yourself get annoyed by the name of the data structure generated internally.
You can ignore it (provided you do not try to reprogram the joiner in the ST, see

below).

Result
Based on this, ibalLogic generates the joiner with which the element selected is
addressed from the data structure generated internally.

For detailed description of joiners and splitters, please refer to section "Converters,
splitters, joiners, Page 161",

The following "joiners" are generated:
Q "Module Joiner"

d "Signal Joiner"

U "Signal Property Joiner"

figure 146: Joiner

1 Signal Property Joiner 3 Module Joiner

2 Signal Joiner

Step 3: Create other measure signals

You can connect the other signals directly with the signal joiner.

Note

Do not use the "Disable" inputs of the "Signal Property Joiner" in order to switch off the
recording of individual signals for a period of time. This leads to incorrect recording.

Since the individual samples do not have a time stamp, the trend curve is always
displayed contiguously. The gap desired is then at the end of the .dat file.

Issue 4.2.4 269

Manual ibaLogic-V4

16.2.1.4 Step 4: Starting the recording

16.2.1.5

< Start the PMAC.
o Setthe SWITCH in DAT_FILE_WRITE.STORE_FILE to "On".

Result

You recognize the ongoing recording from the incrementing value of the interface
"DAT_FILE_WRITE_1.SUM_VALUES_STORED". Check the result by opening the .dat
file generated with "ibaAnalyzer".

Alternative: Programming Joiner in ST

In order to keep the layout uncluttered and clear, you can, of course, also program the
assignment of the measured signals at the DATA connector in an ST function block.

Example, similar to the configuration given above:

2 Go with the mouse to the DATA connector of the DFW module. The tooltip shows
you the structure data type generated internally,
e. g. "DFW_634094511415156250_Data". Note this down!

o Generate a function block having one or more input variables of type REAL and one
output variable of type DATA connector of the DFW module.

= Activate "Intellisense".
= Begin with the assignment, and write "01.".

= As soon as you have entered the point, ibalLogic displays the structure elements
(here "module_01"), since "01" is a structure data type.
Select the elements provided using the up/down cursor keys, accept them with
"Tab" and place a dot at the end.

= Since even "module_01" is a structure, ibaLogic displays its structure elements,
here, all digital and analog signals. Select "Sine" and place a dot at the end.

= "Sine", on the other hand, is a structure data type, thus, ibaLogic displays the
structure elements "data" and "disable". Choose "data" and continue with the
assignment " :=i1;".
Result

With this, you have completed the first signal. You can enter other signals in the same
manner. The result should then look like this:

1 ol.module 0l1.Sine.data := il;
2 ol.module 0l.Analog 02.data := 1i2;

270

Issue 4.2.4 m

ibaLogic-V4 Manual

You can only connect the inputs with the matching measured signals and the output
with the DATA connector of the DFW module.

GENSRATOR S
GENTYFE

AMPLIEE FE_JomEA
oFFESl OUTh T

FERD mE
mus=
EUDER

oW OUT [

ot 7 oun

figure 147: Sample circuit "Measured signal assignment"

Note

If you would like to modify the signal configuration of the DFW subsequently, you have
to remove the connection at the DATA connector and, after the modification, assign
the new data type to the output connector of the FB_JOINER. You may possibly have
to modify the assignments in ST.

16.2.2 DAT_FILE_WRITE in "Buffered Mode"

In the "Buffered" mode (Explanation see "Buffered Mode, Page 192") an array of n data
samples is stored in each storage cycle. The signals to be stored must be available as
arrays. This has the consequence that certain parameters of the DFW module have a
slightly changed meaning.

Use this mode when the sampling cycle of the data to be saved is faster than the
fastest in the ibalLogic task cycle.

Task: Store 8 analog values from ibaPADUS.

Preset parameters
= Sampling rate of ibaPADUS8: 1 ms

ibaPADUS to ibaFOB-Link0, mode integer "Buffered"
= Interrupt time base: 1 ms
Win XP platform

= Task interval: 20 ms

m Issue 4.2.4 271

Manual

ibaLogic-V4

16.2.2.1 Step 1: Configuration of the buffered inputs

2 General configuration:

The following hardware signals are available for the configuration of data buffering /

data transfer (see description in section "Buffered Mode, Page 192"):

= Qutput signals
"...DataSize", ,...Ratio", "...RequestBuffer"

= Input signals
"...CurDataSize", "...FillCount"

Choose the parameters based on the following considerations:

= The array depth in DFW must be greater than or equal to "DataSize".

= Sampling time (in DFW) must be the same as (Array depth * Sample time).

» The "DataSize" must be selected such that the following condition is met:

Task interval £ Sampletime * DataSize / Ratio / 3

(The factor "3" is used to ensure that no samples are lost, even if the task gets

suspended.)

= For the example, choose DataSize = 100,
hence, it must be that: "Task interval < 1ms * 100/ 1/ 3",
i.e. the task interval must be less than 33 ms. Select 20 ms.

Create a user-defined block, with which you can preset the output signals for the

buffered mode, for example

ak if {iEnable = TRUE) then
2 if (iEnable <> wl1) then
3 ofize := ifize;

i oRatio := 1;

5 oTime := iTime;

3 oTakeover := TRUE;

7 else

=] oTakeover := FALLSE;

=] end if;

10 oReguest := TRUL;

Akl else

Al oReguest := FALLSE;

13 end if;

14

15 w1l 1= iEnable;

< Join the block with the output signals

Set the Parameters for
Data Buffers

Switch On [Off the
Data Buffering

FE_Contral FEUF_1

" 5 — gy 00 jI" FobDBuf0MODataSize
Size oSze[d) 100
oRatio[1} | eeese————— 1 [T FobDBufOMORat0
EWITCH_1 1000 ifime oRequest[T} TRUE __
o haa 1000 TRUE " FobDBufOMOR equest.
FALSE | WAL moun } TRUE === TRUE p[TiEnable ;rop00o | Faies

(The connectors iTime, oTime and oTakeover are not required here.)

272

Issue 4.2.4

ibaLogic-V4 Manual

16.2.2.2 Step 2: Set the parameters of the DFW module, "General
Configuration”

< Go offline.

2 General configuration

Asynchr. access: Disabled

Storage cycle: 10 (not relevant)

Start time offset: 0

Save values: Enabled

Write to file: Disabled (is controlled externally)

Post-processing: Disabled

Sign the file: Enabled

Technostring: Empty

File information: Empty

Folder: Choose a directory on a local drive using the
browser button, e. g. "d:\dat\ibaLogic\"

File name: Accept the default value specified.

Sampling time: Specify the storage interval.

Storage interval = Array depth * sampling time
Select an array depth of 200, based on which the
storage time works out to 0.2 sec.

2 Signal configuration

Name: »module_01"
Mode: "Buffered"
Values: 200

Digital values: 8

Data type: Integer
Analog values: 8

2 Specify the array size as 200 in the "Values" column. This yields a storage time
of 200 ms (see above).

1 Ar_gumenls_ Graphical |

| Com_n_wn _Cﬂnfi_g_u_[ﬁt_ipn_j Signal Canfiguration

Module definition

Mame
» module_01
#

Values Digitals Datatype Analogs

=red
() UnbuFfered

i)

(N

m
o [0

< Go online.

i85 Issue 4.2.4 273

Manual ibaLogic-V4

16.2.2.3 Step 3: Accept the buffered input signals

2 Drag a "COLLECT_ARRAY" block from the "Type Conversion" function block folder
and drop it in the workspace window.
The block is used to transfer the input array
(data type FOBFBUF _INT) into the array for the DFW.

> Create a user-defined (FB_DAAV) having the following properties to generate the
"TAKEOVER" signal for the COLLECT_ARRAY:

P =

1INT it lo
= Variable type: Output

1/BOOL o1 [FaLse
= Wariable type: Yariable

1 INT vi D

Structured Text

{(* Set Output TRUE, whenver the input wvalues changes. %)
ol = (il<>wl):z w1l = il:

1
2

2 Connect the blocks as illustrated in the following screenshot.

FE_DAAV_1
FobDBufOMOFillCouni[=y 125 wes 125 it of [74 FALSE

FobDBufOMOCurData . [T1 100 je—
COLLECT_ARRAY_&
FALSE s[T TAKEOVER —
3 oFFSET OUTT8[11075] p—
100 -l_"-".-5\LII'.'I_5IZEB
- UFFER_FULL[4 FALSE
FobDOOiMO0BufAnal0 7 [[11073] 47 IN T 7]

274 Issue 4.2.4 @

ibaLogic-V4 Manual

16.2.2.4

16.2.2.5

0 4MVALID_SIZE,
e e

SE piT TAKEOVER

Step 4: Transfer the data to DAT_FILE_WRITE

2 Create a SWITCH block and connect its output
DAT_FILE_WRITE.STORE_FILES.

o Connect the COLLECT_ARRAY.BUFFER_FULL with
DAT_FILE_WRITE.STORE_VALUES.

2 Connect the output COLLECT_ARRAY.OUT with
DAT_FILE_WRITE.DATA.
ibaLogic pops up the selection menus for the joiner.
Select here the "module_01 - Analog_01 - ... AnaArr0".

Switch On { Off the Data
Store

Collect and Copy 100 Integers
from Amay [0..255)
10 Array [0...199]

Analog_01

Anslog_02 disable: BOOL

i detai DFW_639141139205937500_DModd_AnaArd

Analog_04 » h

Result
The data is transferred to DAT_FILE_WRITE.

Switch On [Off the Data
Collect and Copy 100 Integers Store

from Array [0._255}

to Array [0...199] SWITCH 2

ALSE | VAL @‘ﬁouﬂ’- FALSE

FILEINFO
TECHNO_S

COLLECT_ARRAY_6

FALSE | d -
;E'E JETAEEE OUTFT [0] el Pl (0] 17 cinta | _:[ig'

OFFSET PP_COMMZ

PP_ENAB
TRUE | SIGN_FILE
| FALSE e FALSE 17 module 01 | FALSE o FALSE |~ DATA

BUFFER_FULL[4 FALSE st

COLLECT_ARRAY_T
OFFSET g

v
§ ,I\;UD’S‘ZEBUFFER_FULL FALSE

Step 5: Wiring (Connecting) the remaining inputs
2 Copy one COLLECT_ARRAY block for each analog input.

with

S Connect all COLLECT_ARRAY.TAKEOVER with the DataAvailabe signal

(FB_DAAV.01).

2 Connect all COLLECT_ARRAY.VALID_SIZE with the output of the
converter to " ... CurDataSize".

2 Connect each COLLECT_ARRAY.IN with the respective buffered
analog input " ... BufAnann"

o Connect each COLLECT_ARRAY.OUT with the respective connector
"Analog_nn" of the joiner.

Issue 4.2.4

275

Manual ibaLogic-V4

16.2.2.6 Step 6: Starting the recording

O

©

< Set the SWITCH in DAT_FILE_WRITE.STORE_FILE to "On".

Result

You recognize the ongoing recording from the incrementing value of the
interface "DAT_FILE_WRITE_1.SUM_VALUES_STORED". Check the result by
opening the .dat file generated with "ibaAnalyzer".

Tips
1. You can use the unbuffered inputs in parallel to the buffered inputs, for
example, to visualize the analog signals using the ibaPDA Express.

2. Check the .dat file: If the time scale does not match the actual recorded
time, either the sampling time has not been configured correctly or the
task interval, DataSize and array depth are not compatible with one
another.

Documentation

The example given above is included in the CD supplied.

276

Issue 4.2.4 @

ibaLogic-V4 Manual

17

Naming conventions

A name is a string of alphabets, digits and an underscore. The following rules are
applicable:

Q Capital and small letters are not relevant, for example, ABCD and abcd are
identical.

U Names must begin with an alphabet or an underscore. A name cannot begin with a
digit.

Q Underscores are significant in the names, for example, A BCD and AB_CD are
different names (in contrast to this in number constants).

U Underscores at the end of a name are not permissible, e. g. ABCD_

Q Multiple underscores are not allowed, e. g .AB__ CD

Q Keywords, e. g. for and if, are not allowed.

Peculiarities with ibaLogic:

Names having only one alphabet are not allowed.

Note

These rules, in general, are applicable to ibalLogic, and even beyond function blocks,
e. g. for the names of OTCs, IPCs, input and output signals, function block names etc.

Issue 4.2.4 277

Manual

ibaLogic-V4

18 Data types
18.1 Standard data types
ibalLogic supports the following elementary data types:
Type Range (Min.) Range (Max.) Explanation
BOOL 0 (FALSE) 1 (TRUE)
BYTE 16#00 16#FF 8-bit
WORD 16#0000 16#FFFF 16-bit
DWORD | 16#00000000 16#FFFFFFFF 32-bit word
SINT -128 127 8-bit signed integer
USINT 0 255 8-bit unsigned integer
INT -32768 32767 16-bit signed integer
UINT 0 65535 16-bit unsigned integer
DINT -2147483648 2147483647 32-bit signed integer
UDINT 0 4294967295 32-bit unsigned integer
REAL 1.175494351 e-38 3.402823466 e+38 Floating point, single accuracy,
32 bit
LREAL 2.225073858 ... e-308 1.797693134862 ... e+308 | Floating point, double accuracy,
64 bit
TIME -2147483648ms 2147483648ms Time, mapped internally as DINT
with 1 ms resolution per
-24d_20h_31m_23s_648ms |24d_20h_31m_23s_648ms |, .o oo¢
STRING |0 250 characters String with number of characters
(249 for the user, on account | including the end flag (NULL)
of NULL flag at the end)
18.2 Derived data types
Type Explanation
DIRECT_DERIVED Elementary data types with a fixed value (Constants)
SUBRANGE Integer data types with a limited range of values
STRING_DERIVED String having a fixed value and length
278 Issue 4.2.4 i8]

ibaLogic-V4

Manual

18.3

Generic data types

Type Explanation

ENUM Enumerator type, names are defined instead of values.

ARRAY Structure, consisting of any sequence of one of the a.m. data types (with the
exception of the string that already represents an array); maximum four-
dimensional
Maximum number of elements: 32767

STRUCT Structure, consisting of any sequence of the data types mentioned above

Maximum number of elements: 1048576

Important Note

Internally, the memory is limited to an internal size of 63 KB for each level. Thus,
for example, the memory requirement of all input and output variables of a function
block should not exceed this size.

For more information, please refer to "Performance Limits, Page 240".

Issue 4.2.4

279

Manual ibaLogic-V4

19 Standard Function Blocks

The Appendix contains a tabular overview of all functions and function blocks that are
available in ibalLogic-V4.

19.1 Table interpretation

This section provides tips and instructions on interpreting the tabular overview.

Column Explanation

Input data type The input data type columns list the data types permissible for each connector.
There are blocks for whose connectors the data types are not defined right
from the beginning, but whose data type is defined only when a connection is
drawn to another connector.

Block design
Green Functions or function blocks have been defined in conformity with
the IEC 61131-3 standard.
Yellow Functions or function blocks have been defined by iba AG.
This block is expandable, i. e. you can change the number of inputs.
Open the block by double clicking on it and modify the "Number of inputs".
Output data type The output data type columns list the data types permissible for each

connector. There are blocks for whose connectors the data types are not
defined right from the beginning, but whose data type is defined only when a
connection is drawn to another connector.

Explanation, example, | There is a note provided for each function regarding whether and how you can
ST syntax call up the function within ST. You can also clone functions as multiple lines of
ST code. This, however, is not executed.

19.2 Data types
The data type "ANY" with the following variants is displayed for the "untyped"

connectors:

Data type "ANY" with Explanation

"untyped" connectors

Any_Int All integer types (SINT, INT, DINT, USINT, UINT and UDINT)

Any_Real All real types (REAL, LREAL)

Any_Num All numerical data types (all integers and real values)

Any_Magnitude All numerical data types and the TIME type

Any_Bit All bit-oriented types (BOOL, BYTE, WORD and DWORD)

Any_String STRING data type

Any_Elementary All elementary types (Integers, real values, TIME and
STRING)

Any_Derived All elementary data types, arrays and structures

Any Any data type

280 Issue 4.2.4 m

ibaLogic-V4 Manual

19.3 Block type with function diagram display

Functions, function blocks and macro blocks are displayed in the design area as

follows:
Block type with function diagram Explanation
display
Function You can recognize a function from the corners.
ADD_1
I
Nz OUT
Function block You can recognize a function block from the rounded
corners.
Functionbdock 1
Inipiust Ot
Macro block You can recognize a macro block from the flattened
corners.
Macro 1
|t Output
Automatic type converter You can recognize a type converter from the letter "C"
in the icon.
Automatically generated structure joiner Automatically generated structure joiner
i Tempsraturs This is generated automatically as soon as you try to
== :miwsﬁ‘-‘l connect a single parameter with a structure.
iatus
Error
Purnp
"Pump Type E7F29"
- Temperature @ INT
- RotarySpeed : REAL
- Skatus ¢ INT
- Errar i REAL
Automatically generated structure splitter Automatically generated structure splitter
This is generated automatically as soon as you try to
TEMpErStune |7 m— connect a single parameter with a structure.
e RotarySpesd
Ststus
Error
Purnp
"Pump Type EFF92"
- Temperature @ IMNT
- RotarySpeed ;| REAL
- Skatus ¢ INT
- Errar ¢ REAL

i85 Issue 4.2.4 281

Manual ibaLogic-V4

19.4 Analytical Functions

Input Block design Output Explanation, example,
data type data type ST syntax
DERIVATIVE:
— DFRI_W"TI“J Derivative of a value based on the
Real Lol ML time
Real 1.0 FACTOROUT 0.0 Real
Bool FALSE § RESET The output value "OUT" is the

derivative of the input

value, "VALUE", multiplied with a
facto, "FACTOR", of the time
dimension. The output is reset with
the input "RESET" = "TRUE".

Implementation:

OUT:=(VALUEN-VALUER-
1)*FACTOR

ST: cannot be called up

INTEGRAL:

INTEGRAL T Integration of the value over time
Real VALUE
Real i FACTOROUT 0 Real The output value "OUT" is the
Bool FALSE | RESET integral of the input value, "VALUE",
multiplied with a factor "FACTOR",
of the time dimension. The output is
reset with the input,
"RESET" = "TRUE".

e
[=hr=]

(%]

Implementation:

OUTn:=0UTn-
1+(VALUENn*FACTOR);

ST: cannot be called up

MOVING_AVERAGE:
Moving average value

MOVING_AVERAGE 1
Dint 1| count L Dint

o] vavE aeeace = Bool The input value "COUNT" defines a
Real oL

Real number of values (= samples) that

are considered for average
calculation of the value "VALUE".
The output value "SIZE", indicates
the number of values used for the
calculation of the average value.
The output "FULL", is "TRUE" if the
number of values (samples)
specified has been reached. The
output value "AVERAGE" yields the
cumulative average value.
AVERAGE:= (sum of the last SIZE
values) / SIZE.
The average calculation of the value
is performed continuously. The
number of samples can be modified
whenever required.

ST: cannot be called up

282 Issue 4.2.4 m

ibaLogic-V4 Manual

Input Block design Output Explanation, example,

data type data type ST syntax
PIDT1_CONTROL:

FILELBE S PIDT1 control block

Lreal 0.0 w 2

Lreal 0.0 X 0.0 Lreal Universal PIDT1 controller that can

e 5 lll.“‘LF be switched to operating modes as

Lreal YE 0.0

Lreal 10 LU Lreal a P, |, Pl or PIDT1 controller.

Lreal 00 ERch o You will find a detailed description

Lreal 10 W Lreal in "PIDT1_CONTROL, Page 107".

Time s §i N

Lreal h"-’ ¥l 0.0 ST: cannot be called up

Time il L Lreal

Bool FALSE | ENAB e .

Bool FALSE} NV

Bool TRUE | EN_P

Bool FALSE | EM_I 2. | FaLse | Lreal

ngl FALSE || GET

FALSE | HI LS
ggg: FALSE | EN.D e e | B0l
Bool
PT1:
Lol L Time delay element of the 1st order
rea 0.0 X .

Time T SRR LT Lreal The input variable X is delayed
dynamically by the smoothing time
constant, T1, and fed to the
output Y.

Implementation:
ti: = time_to_lreal(T1) /
time_to_lIreal(EvalDeltaTime 7);
Y:=1.0/
(1.0 +t1) * (X + ti * Yold);
Yold: =Y;
ST: cannot be called up
RAMP:

RAMP_1 Ramp function block

trea: _ i‘L 0.0 Lreal Block with two different ramps for

Lrea - the manual and automatic modes.

real 1) Lu U —

Lreal 0.0 5V = Lreal You will find a detailed description in

Lrea SR e wue "RAMP, Page 115".

> Bool

Bool = C .

oo E:tEE ES S EIEE ST: cannot be called up

= Bool

Bool FALZE | CF =

Bool FAsEl ser FALEE

Bool

’ EvaldeltaTime is the time between two processing cycles (calculated internally).

Issue 4.2.4

283

Manual ibaLogic-V4

19.5 Arithmetical Functions

19.5.1 General

ABS: Absolute value
Example:

+1343 = abs(-1343);
ST:

OUT := abs (IN);

Any_Num Any_Num

SQRT: Square root
Any_Real Example:

+3.0 = sqrt(9.0);

ST:

OUT:= sqgrt (IN);

Any_Real

19.5.2 Logarithmic

EXP:

Natural exponent to the base e
Any_Real Any_Real Result: = earg;

Examples:
2.71828 = exp(1.0);
0.13533 = exp(-2.0);

ST:
OUT:= exp (IN);

LN: Natural logarithm

Any_Real Example:
+1.0 =In(2.71828);

ST:
OUT:= 1n (IN);
LOG: Logarithm to the base 10

Any_Real

Any_Real Any_Real Example:
+1.0 = log(10.0);
ST:

OUT:= log (IN);

284 Issue 4.2.4 @

ibaLogic-V4 Manual

19.5.3

Trigonometric

ACOS: Arc cosine

Example:
1.57079 = acos(0.0);

ST:
OUT:= acos (IN);

ASIN: Arc sine

Example:
-1.57079 = asin(-1.0);

ST:
OUT:= asin (IN);

ATAN: Arc tan

Example:
1.0000 = atan(n/2.0);

ST:
OUT:= atan (IN);

ATAN2: Arc tan

Example:
1.1071 = atan2_real(p,p/2.0);

ST:

Different calls for the REAL and
LREAL data types

OUT:= atan2 real (INI,

IN2) ;

OUT:= atan2 lreal (INI,
IN2) ;

COS: Cosine

Example:
-1.0000 = cos(n);

ST:
OUT:= cos (IN);

COSH: Hyperbolic cosine

Example:
+27.3082 = cosh_real(4.0);

ST:

Different calls for the REAL and
LREAL data types

OUT:= cosh real (IN);
OUT:= cosh lreal (IN);

Any_Real Any_Real
Any_Real Any_Real
Any_Real Any_Real
Any_Real Any_Real
Any_Real

Any_Real Any_Real
Any_Real Any_Real
Any_Real Any_Real

SIN: Sine

Example:
1.0 = sin(n/2);

ST:
OUT:=sin (IN) ;

Issue 4.2.4

285

Manual

ibaLogic-V4

Input
data type

Block design

Output
data type

Explanation, example,
ST syntax

Any_Real

-1.5708

201 Any_Real

SINH: Hyperbolic sine

Example:
-2.3013 = sinh_real(-n/2.0);

ST:

Different calls for the REAL and
LREAL data types
OUT:=sinh real (IN);
OUT:=sinh lreal (IN);

Any_Real

TAN_1
N QUT

©
(=1}

45... Any_Real

TAN: Tangent

Example:
0.648 = tan(10.0);

ST:
OUT:=tan (IN) ;

Any_Real

TANH_1

I, OUE 4|0.761.. Any_Real

TANH: Hyperbolic tangent

Example:
0.76159 = tanh_real(1.0);

ST:

Different calls for the REAL and
LREAL data types
OUT:=tanh real (IN);
OUT:=tanh lreal (IN);

19.5.4 Miscellaneous

Input
data type

Any_
Magnitude
Any_
Magnitude

Block design

Output
data type

-T2

=1 e

ADD_1
I
IN2

OUT | -1404

Any_
Magnitude

I Expandable

Explanation, example,
ST syntax
ADD: Addition

Example:
-1404 = -702 + -702;
ST: Use operator:

OUT:= IN1 + IN2 + ... +
INn;

Any_Num
Any_Num

BT Any_Num

DIV: Division

Example:
-215.3 =-702.0 / 3.26;

ST: Use operator:

OUT:= IN1 / IN2;

Attention: If the divisor IN2 = 0, the
result is set to 0 and an error
message "Division by Zero" is
output cyclically in the event
window.

286

Issue 4.2.4

ibaLogic-V4

Manual

Input
data type

Any_Real
Any_Num

Block design

Output
data type

EXFT 1
INt
IN2

Ll en
[Sh=
o
{ =y
=

Any_Real

Explanation, example,
ST syntax

EXPT:General exponent to the base
(IN2)

Result: = arg1®%%;

Examples:
125.0 = expt(5.0, 3.0);
4.0=16.0**0.5;

ST:
ouT
or

OouT :=

expt (IN1, IN2);

IN1 ** IN2;

Any_Real

FRAND_1
1.0 N OUT

0.740.. Any_Real

FRAND: Random number in the
range {0 ... arg}

Example:
+0.07116 = frand_real(1.00);
+2.92457 = frand_lreal(6.00);

ST: Different calls for the REAL and
LREAL data types

OUT:= frand real (IN);
OUT:= frand lreal (IN);

Any_Int
Any_Int

-26 INT

-1 Any_Int

MOD: Division remainder (Modulo)

Example:
-1 =-26 mod 5;

ST: Use operator:
OUT:= IN1 mod IN2;

Any_Num
Any_Num

Any_Num

I Expandable

MUL: Multiplication

Example:
15.0=5.0 * 3.0;
4=2*2;

ST: Use operator:

OUT:= IN1 * IN2 * .. *
INn;

Any_
Magnitude
Any_
Magnitude

SUB_1

-T02.0 INT
ouT
6.04 IN2

-T0E.0..

Any_Magnitude

SUB: Subtraction

Example:
-708.04 = -702 — 6.04;

ST: Use operator:
OUT:= IN1 - IN2;

Issue 4.2.4

287

Manual ibaLogic-V4

19.6 Bistable

Input Block design Output Explanation, example,
data type data type ST syntax
RS: RS flip-flop
RE_1 (static binary value store)
Bool iit:; EEI—E-EI"EQ‘ FaLSE Bool R-dominant
Bool Truth table:
Input values Output
SET RESET1 Q1
0 0 Q1
0 1 0

1 0 1
1 1 0

ST: cannot be called up

SR: SR flip-flop
o (static binary value store)
FALSE | SETI S-dominant
Bool FALSE | RESETC . hLSE Bool orminan
Bool Truth table:
Input values Output
SET RESET1 Q1
0 0 Q1
0 1 0

1 0 1
1 1 1

ST: cannot be called up

288 Issue 4.2.4 @

ibaLogic-V4 Manual
19.7 Bit String
19.7.1 Bit shift
Input Block design Output Explanation, example,
data type data type ST syntax
ROL: Rotate arg1 left by arg2 Bits
ROL_1
co N Examples:
Any_Bit =g o U 16275, Any_Bit 16#F50000C2
Uint =rol(16#C2F50000,8);
16#45678123
=rol(16#12345678,12);
ST:
OUT := rol (IN1,IN2);
g ROR: Rotate arg1 right by arg?2 bits
Any_Bit 16200 | IN1 - I Examples:
Uint s mz ST 8O daAny Bit 16#F00000C2 = ror(16#C2F 4);
16#F500000C = ror(16#CF5,8);
ST:
OUT := ror (IN1,IN2);
SHL: Shift IN1 left by IN2 bits and
P fill up zeros on the right
16500~ IN1 -
Any_Bit 4 nz OWT 18500 Any_Bit Example:
Uint 16#0D90 = shl(16#00D9,4);
ST:
OUT := shl (IN1,IN2);
SHR: Shift IN1 right by IN2 bits and
SHR_1 fill up zeroes on the left
16200 .. Nt =
Any_Bit EFD; g OUT 18500 Any_Bit Examples:
Uint 16#000C = shr(16#0180,5);
16#00D9 = shr(16#0D90,4);
ST:
OUT := shr (IN1,IN2);
i85 Issue 4.2.4 289

Manual ibaLogic-V4

19.7.2 Bitwise_Boolean

AND: Logical AND combination

Example:

16#80=

and(16#0180, 16#FFFO,
16#FOFO0, 16#00F0);

ST: Use operator:

OUT := IN1 AND INZ2 .. AND
INn;

Any_Bit
Any_Bit
Any_Bit
Any_Bit

NOT: Logical NOT function

Examples:
FALSE = not(TRUE);
16#FE7F = not(16#0180);

ST:
ouT

Any_Bit

not IN;

or

OUT := not (IN);

OR: Logical OR combination

Examples:
1=or(1,0,1);
16#F3 = or(16#F0,16#03);

ST: Use operator:

OUT:= IN1 or IN2 or ..
INn;

Any_Bit
Any_Bit
Any_Bit

XOR: Logical XOR combination.

Examples:

FALSE = xor(TRUE,TRUE);
16#F073 =
xor(16#0180,16#F1F3);

ST: Use operator:

OUT:= IN1 xor IN2 xor ..
INn;

Any_Bit
Any_Bit

290 Issue 4.2.4 @

ibaLogic-V4 Manual

19.8 Character String

Input Block design
data type

COMCAT_1
Any_String Diiesi .. IW1

Any_String e STV OUT |Diesi..

Expandable I

Output
data type

Any_String

Explanation, example,
ST syntax

CONCAT: Combining (joining) sub-
strings

Examples:

"This is a text'=
concat('This is', ' a text')
ST:

OUT:=concat (IN1,
IN2,..,INn) ;

DELETE 1
1N
L OUT .| Dies..

m
m

e
-

Any_String O
Uint
Uint

Any_String

DELETE:

Delete L characters of a string from
(including) position P.

The first character has the

position 1.

Examples:

"This text'=

delete('This is a text',8,5);
'DE' = delete('ABCDE',3,1);
ST:

OUT:=delete (IN, L,P);

FIND_1

Any_String Dizs I ouT r

Any_String X IMZ

m
1

Int

FIND:

Search for the first match of
character IN2 in string IN1.

If the character is not found, the
result = 0.

Examples:

16 = find('This is a text', 'x');

1 =find('This is a text', 'D");
ST:

OUT:=find (IN1, IN2);

INSERT_1
Any_String AE INi

Any_String BCD IN2 OUT FABCDE
Uint 1 3

Any_String

INSERT:

Inserting string IN2 in string IN1
after the position P. If P=0, IN2 is
inserted at the beginning.

Examples:

'ABCDE' = insert('AE','BCD', 1);
'XABC' = insert('ABC','x',0);

ST:

OUT:=insert (IN1, INZ2,P);

Any_String Elia_si... IM ouT .
Uint T L

Any_String

LEFT:
The left part of a string IN having
length L

Example: 'This is'=
left('This is a text',7);

ST:
OUT:=left (IN,L);

m Issue 4.2.4

291

Manual ibaLogic-V4
Input Block design Output Explanation, example,
data type data type ST syntax
— MID:
Anv Stri Ds N Section of a string IN having
ny_String Diesi.. . .
Uint 5 L OUT | esis Any_String 'egsﬁ,fir;r'; ,f,mm and including
Uint 3 P '
Example:
isis' =
mid('This is a text',5,3);
ST:
OUT:=mid (IN,L,P);
LEN:
, LEM_1 length of a string
Any_String Diesi...| IN _OUT 7 Int (without termination characters)
Examples:
17=len('This is a text');
4= len('text");
ST:
OUT:=len (IN);
REPLACE:
) REPLAGE 1 Replace L characters of the
ﬁzi—gmgg ABC... | IN string IN by IN2 starting from and
- X N2 i i iti
Uint 2 1e out | aBxE Any_String including position P
Uint 3 P Example:
'ABXE' =
replace('ABCDE','X’, 2,3);
ST:
OUT:=
replace (IN1, IN2, L, P);
- RIGHT:
Anv St . IiIGHT" The right part of a string having
ny_String Diesi. N Ut -
Uint 7 L AR Any_String length L
Example:
'a text'=
right('This is a text',6);
ST:
OUT:= right (IN, L);
19.9 Communication
Input Block design Output Explanation, example,
data type data type ST syntax
Any TCPIP_SENDRECV_1 TCPIP_SendRecv:
Bool e = recvom | 4 | Any Transmission and reception of data
Udint o SEND_LENGTH cecoves via TCP/IP
Bool Tl mmwEraon y = Bool '
String e e el Udint The data here is raw data that is
Udint use HUSLER RS0 o sl sase | Bool sent via TCP/IP. In this manner, all
00 FALSE | ACTIVE CONNECTED | FALSE i -
Bool | fioiome s oo gfetlavtee ('jI'CP/IP protocols can be re
Int S| e o | Dvord '
Bool Faice | ReserusT ernon MSERRORSTE el String You will find a detailed description in
ggg: "TCPIP_SENDRECYV, Page 104".
Udint ST: cannot be called up within ST
Bool
Bool
292 Issue 4.2.4 i8]

ibaLogic-V4 Manual

19.10 Comparison

Input Block design Output Explanation, example,
data type data type ST syntax

EQ:

Comparison of equality
EQ_1
Any_ 153 Ni The result is TRUE if all arguments

Elementary 26 N2 OUT | FALSE are identical.

Any_ = Bool
Elementary 22 L Example:

FALSE = (15.3 = 18.6 = 15.3)

ST: Use operator:
I Expandable I OUT := IN1 = IN2 ;

Only two arguments are allowed.
Implementation with logical
combination of multiple
comparisons:

ouT :=
(IN1
IN3) ;

GE:

élny_ . NGEJ Comparison for greater than or
ementary M1 equal to

Any_ e B LS Bool q
Elementary The result is TRUE if IN1 is greater

than or equal to all other arguments.

IN2) AND (IN1 =

o

©a

I Expandable I Example:

TRUE =12 >=0;

ST: Use operator:

OUT:= IN1 >= IN2;

Only two arguments are allowed.
Implementation with logical

combination of multiple
comparisons:

ouT :=
(IN1 >= IN2) AND (IN1 >=
IN3) ;

GT: Comparison for greater than

Any GT 1
Elementary 24 1M1 The result is TRUE if IN1 is greater

ouT
Any_ 4 INZ I Bool than all other arguments.

Elementary
Example:

FALSE = 34 >34;

ST: Use operator:

OUT:= IN1 > INZ2;

Only two arguments are allowed.
Implementation with logical

combination of multiple
comparisons:

ouT :=
(IN1 > IN2) AND (IN1 >
IN3) ;

I Expandable I

i85 Issue 4.2.4 203

Manual ibaLogic-V4

Input Block design Output Explanation, example,
data type data type ST syntax
LE:
Any_ Comparison for less than or
Elementary LE 2 equal to
Any_ 1.2 1IN
Elementary 13 INZ OUT | TRUE Bool The result is TRUE if IN1 is less
1.5 INZ than or equal to all other arguments.
Example:
TRUE = (1.2 <= 1.3 <= 1.5);
| Expandable | ST: Use operator:

OUT:= IN1 <= IN2;

Only two arguments are allowed.
Implementation with logical
combination of multiple

comparisons:
OUT := (IN1 < IN2) AND
(IN1 < IN3):;
Tt LT: Comparison for less than
Any_ =
Elementary e INT oot | TRUE The result is TRUE if IN1 is less
Any_ il INZ Bool than all other arguments.
Elementary £ |
xample:
I Expandable | TRUE = (3 <6);
ST: Use operator:
OUT:= IN1 < INZ;
Only two arguments are allowed.
Implementation with logical
combination of multiple
comparisons:
OUT := (IN1 < IN2) AND
(IN1 < IN3);
NE:
Any_ e Comparison of inequality
Elementary IM1 out | TRUE
Any_ 21 INZ Bool The result is TRUE if IN1 is not
Elementary equal to N1.
Example:

TRUE = ('Text 1' <> '"Text 2);

ST: Use operator:
OUT:= IN1 <> IN2;

294 Issue 4.2.4 m

ibaLogic-V4

Manual

19.11

Counter

Input
data type

Bool
Bool
Int

Block design

FALSE
FALSE
0

CTD_1

CD
LOAD
Py

2
cyY

Output
data type

TRUE Bool

Int

Explanation, example,
ST syntax

CTD:
Count down (Downwards counter)

When the counter is set with

LOAD = 1 the counter value CV is
set to the initial value PV. With each
rising edge of CD, the counter
value CV is decremented by one.
As soon as the counter output

is CV <=0, the output is set Q = 1.
The CV output runs down to a
minimum value of -32,768.

|

I

]

]

]

]

]

I

|

] |
cv —_‘_‘—‘_ll

0

!
|
| !
col |
! !
|
|
|

Load

Time (ms)

ST: cannot be called up

Bool
Bool
Int

FALSE
FALSE
[1]

CTU_1

cu
RES...
PV

Q
oV

TRUE Bool

Int

CTU:
Count up (Upwards counter)

With each rising edge of CU, the
counter value CV is incremented by
one.

As soon as the counter output

CV > = count value PV, the

output Q is set to "TRUE". When
"RESET" = 1, the output Q is set to
"FALSE" and the output CV is set to
0. The CV output runs up to a
maximum value of 32767.

PV

cv

cu

Reset

Time (ms)

ST: cannot be called up

Issue 4.2.4

295

Manual

ibaLogic-V4

Input
data type

FALSE
goo: FALSE
00 FALSE

Bool FALSE
Bool 5

Int

Block design

CTUD_1
cu au

CcD

RESETQD
py GV

Output
data type

TRUE Bool

TRUE
Bool

Int

Explanation, example,
ST syntax

CTUD:
Counter for counting up and down
Up/Down counter)

With each rising edge of CU, the
counter value "CV" is incremented
by one per sampling time. When the
counter output is "CV" >= count
value "PV", the output is QU = 1
(Flow diagram see"CTU" FB).
When the counter is set with
"LOAD" = 1, the counter value "CV"
is set to the initial value "PV".

With each rising edge of "CD", the
counter value "CV" is decremented
by one. As soon as the counter
output is "CV" <= 0, the output

is "QD" = 1 (Flow diagram see
"CTD" FB).

When the counter is "RESET" =1,
the counter output is set to 0.

Range of values for "CV":
-32,768 to 32,767

ST: cannot be called up

19.12 Edge Detection

Input
data type

Bool FALSE

Block design

F_TRIG 1
ClK @

Output
data type

FALSE Bool

Explanation, example,
ST syntax

F_TRIG:
Detecting falling edges

With a falling edge at the
input "CLK", the output Q is set to
"TRUE" for one task cycle.

Start-up behavior:

When the input "CLK", is "FALSE"
at the time of system start-up, the
function block generates a pulse at
the output Q = "TRUE" for a period
of one cycle.

b

T4 T lime(ms]

ST: cannot be called up

296

Issue 4.2.4

ibaLogic-V4

Manual

19.13

Input
data type

Bool

Block design Output
data type

R_TRIG 1
FALSE | CLK. @ .| FAISE Bool

Explanation, example,
ST syntax

R_TRIG:
Detecting falling edges

With a rising edge at the
input "CLK", the output Q is set to
"TRUE" for one task cycle.

Start-up behavior:

When the input; "CLK", is "TRUE" at
the time of system start-up, the
function block generates a pulse at
the output Q = "TRUE" for a period
of one cycle.

3

cIkJQ—é—‘ r—l_—

TA TA time (ms)

ST: cannot be called up

Register

Input
data type

Dint
Any

Block design Output
data type

DELAY 1

500 | COUNT -
out |09
— 06154 VALUE LS Ay

Explanation, example,
ST syntax

DELAY: Time delay feature

The output value "OUT", follows the
input value "VALUE", with a time
delay that is specified by the
"COUNT" input in number of cycles.

X

“alue

aut

Count o t

When you use the "ARRAY" data
type ("VALUE" and "OUT"), the
block is limited on account of
memory capacity. If the number of
"ARRAY" elements exceeds 64, the
range of values of the time delay

of 65,536 is reduced accordingly.

ST: cannot be called up

Dint
Real
Real

FIFD_1
2 COUNT

m0505_ 87 VALUE OUT |-0.3%6..) Real
1.0 FACTOR

FIFO:
First In First Out - Storage

The output value "OUT", follows the
input value "VALUE", with a time
delay that is specified by the
"COUNT" input in number of cycles.
In addition, the input value is
multiplied with "FACTOR".

ST: cannot be called up

Issue 4.2.4

297

Manual ibaLogic-V4
Input Block design Output Explanation, example,
data type data type ST syntax
REGISTER_ REGISTER:
Any_ w0508 A VALUE Register memory
Magnitude ® FALSE M7 SET _ , The block works with the signal
Bool ouT |-0.661 Any_Magnitude . .
Bool = FALSE a7 RESET oseet - state and not with the signal edges.
0o 0.0 | RESETVALUE
Any_ Function table:
Magnitude
Input values Output
SET RESET ouT
0 0 OUTn-1
0 1 RESETVALUE
1 0 VALUE
1 1 VALUE
ST: cannot be called up
SHIFT REGISTER. 1 SHIFT_REGISTER: Shift register
. As long as the input
= Eea: "SET" = "TRUE", the input value,
B % FALSE a7 SET o ea "VALUE" is shifted by an output Ti
ool = Real . task |
L: Real in every task cycle.
T5 Real Shift, if "SET" = "TRUE"
- Real
80508 A VALUE v Real TO: =
8 Real VALUE(T,) = current cycle
Real ZHIET Bool T1: =
VALUE(T.) = previous cycle
T8: =
VALUE(T,s] = oldest cycle
where n = task cycle
ST: cannot be called up
19.14 Selection
Input Block design Output Explanation, example,
data type data type ST syntax
LIMIT 1 LIMIT: Limit value
Any_ o e The input value IN is limited to the
Elementary e v R e limit values MN (min.) and
Any_ =-0.225.. 8 0358 Any_Elementary | piy (max.)
Elementary 10.0 WX .)-
Any_ Example:
Elementary -0.389 =
limit(-0.4, -0.389, 10.0);
15.3 =
limit(8.9, 17.6, 15.3);
ST:
OouT :=
limit (MN, IN, MX);
Any MAX_1 MAX: Maximum value
Elementary 0289 fTINT o T Examples:
Any_ 0.3 | IN2 = Any_ 0.3 = max(-0.389, 0.3);
Elementary Elementary 12 = max(0, 10, 12, 5);
I Expandable ST:
ouT :=
max (IN1, IN2, .., INn);
298 Issue 4.2.4 i8]

ibaLogic-V4 Manual
Input Block design Output Explanation, example,
data type data type ST syntax
Any MIN_1 MIN: Minimum value
E|eaentary -0 30 AT N OUT 0333 Any_ Examples:
Any 0.0 INZ Elementary -0.389 = min(-0.389, 0.3);
Elementary 0 =min(0, 10, 12, 5);
I Expandable I ST:
OouT :=
min (IN1, IN2, .., INn);
MUX_1 MUX: Multiple selector
Dint B 1 LK .
Any —Zn7 NOIND OUT | 78 Any Expandable selection block for any
Any - EERT data types. All selection values have
to be of the same data type.
I Expandable I "K" = Selector,
"INO..IN63" selection values,
"OUT" resulting value.
ST: cannot be called up
Bool SEL 1 SEL: Selector
Any_ = FALSE g7 G Selection (1 out of 2) with binary
Elementary =-0.385. 8T INO OUT |.0.389.. Any_ signal "G"
Any_ 0.0 It Elementary)
Elementary Function table:

SEL ouT
0 INO

1 IN1
Example:

-0.389 = sel(FALSE, -0.389, 0);

ST: Different calls for "REAL" and
"INT" data types, and other data
types are not possible.

ST:

ouT :=

sel real(G,INO, INI1);
ouT :=

sel int (G, INO,IN2);

Issue 4.2.4

299

Manual

ibaLogic-V4

19.15

Signal Processing

Input
data type

Block design

One-

dimensional [--] 1IN
real array
having a depth
of 2"

CRFFT_1
ROUT =| [0.0]
= FALSE 81" TRIGGER IOUT | [0.0]

Bool

Output
data type

One one-
dimensional real
array each having

a depth of o™

Explanation, example,
ST syntax

CRFFT:
Fast Fourier Transformation with an
imaginary component

There must be a one-dimensional
array of "REAL" type and having
2**n elements at the input "IN".
The output is then always two
arrays of the same type having the
length 2 **(n-1).

Example:

IN € ARRAY [0...2047]

OF REAL

ROUT - ARRAY [0...1023]
OF REAL

IOUT - ARRAY [0...1023]
OF REAL

The FFT evaluation is enabled
when the input,

"TRIGGER" = "TRUE". It is only
then that the block requires
computing time!

This function block delivers the real
part at the output "ROUT" and the
imaginary part at the output, "IOUT",
of an FFT evaluation.

Evaluation mode:

Absolute amplitude, all values in the
array have the same weight
(Rectangular window).

ST: cannot be called up

One- RFFT_1
dimensional [-1] 1M auT
real array = FALSE §T TRIGGER
having a depth

of 2"

Bool

One one-
dimensional real
array each having

a depth of o™

RFFT: Fast Fourier Transformation

There must be a one-dimensional
array of "REAL" type and

having 2**n elements at the

input "IN".

The output is then always two
arrays of the same type having the
length 2 **(n-1).

Example:

IN € ARRAY [0 ... 2047] OF
REAL

OUT - ARRAY [0 ... 1023]
OF REAL

The FFT evaluation is enabled
when the input, "TRIGGER" =
"TRUE". Here, too, it is only then
that the block requires computing
time!

This function block delivers the
result of an FFT at the output
according to the evaluation mode:
Absolute amplitude, all values in the
array have the same weight
(Rectangular window).

ST: cannot be called up

300

Issue 4.2.4

ibaLogic-V4

Manual

19.16

Input Block design Output Explanation, example,
data type data type ST syntax
T SCALE_ARRAY:
g ——— As long as the input
Bool D O ONYERT _ "DOCONVERT" = "TRUE", each
ea 10 | SCALE OUT . [[1.000_§8 ANY_ element in the input array "IN", is
Real Derived
Any [0.00 IN multiplied with "SCALE" and added
Derived with the value at the "OFFSET"
input.
You then have the scaled array
available at the output "OUT".
ST: cannot be called up
Specials
Input Block design Output Explanation, example,
data type data type ST syntax
S DAT FILE WRITE:
Bool e _ You can use this block to record
g;"?' seepe PULHEEEEER Dint signals directly in ibaLogic for
Lrgglg o FILE 15 OPEN Usint subsequent analysis using the
Ilzrea: ;":EQLT;_:STRWG LAST ERACA_CODE Dword ibaAnalyzer.
rea PP_COMMAND . . . T
Lreal e LAST_ERROR_STRING String YOIL:J) Xv_ll_ll T:I?Iian \c/iveéal_lll_eEd g?:svt\:/rlptlon
Lreal : HoLHLY FILE IS _SIGNED n = — (
Lreal — Bool Function Block), Page 96".
Lreal ST: cannot be called up
Lreal
e EVALTIMES:
VAL DELASHER] 50 917 Real Output of the evaluation data
e [N Real EVAL_DELTA _TIME =
Bool FALSE] RESET =) mME |55 es 0 Real current cycle time of the task
EVAL TIME TICK 3¢z, Real (in ms)
TASK DURATION. | 0.016.. Udint
Real MAX_DELTA_TIME =
max. cycle time of the task since the
previous start (in ms)
MIN_DELTA_TIME =
minimum cycle time
EVAL_TIME =
time elapsed since the previous
start (in ms)
EVAL_TIME_TICK =
time elapsed since the previous
startin pys
TASK_DURATION =
Evaluation time of the current task.
ST: cannot be called up
e FUZZY_CONTROLLER:
EOOI FALSE | ENABLE = Controller block using fuzzy logic.
ool FALSE | LOAD_FILE BT Lreal
String cemp... | FILEPATH You will find a short description in
Lreal oo | Mo TERMLARRAY | 1001 = Array [0..8] of "FUZZY_CONTROLLER, Page
Lreal 0.0 Wi Lreal 119".
Lreal 29 ::; M SIS String ’
Lreal o ERRORGODE | 0 | |t ST: cannot be called up
Lreal 0.0 IN5 n
Lreal L ::3 ERROR_STRI.
Lreal String
Lreal
Issue 4.2.4 301

Manual

ibaLogic-V4

Input Block design Output
data type
GENERATOR_1
Int [GENTYPE
Real 25.0 AMFLITUDE
Real 20 OFFSET OUT| ||-20.56.. Real
Real 3.0 FPERIOD
Real 0.0 PULSE

Graphical Configuration

data type

Explanation, example,
ST syntax

GENERATOR:

Function generator for sinusoidal,
rectangular (square wave) and
triangular (saw tooth) signals.

"GENTYPE" =

1 for sinusoidal, 2 for rectangular
(square wave) and 3 for triangular
(saw tooth) signal

"AMPLITUDE" =

Amplitude value; there is only one
value that is evaluated
symmetrically to the X-axis, i. e. it
applies to both positive and
negative values.

"OFFSET" =

Specification of the offset (position
of the X-axis); if you desire a trend
graph in which the value is non-
negative, you must choose the
offset at least as large as the
amplitude.

"PERIOD" =
Specification of the time period in
seconds

"PULSE" (Pulse width) =
specification of the time for the first
pulse in seconds; it is not used for
sinusoidal waveforms. The value
should not be greater than the time
period. For a symmetric signal,
Pulse = Period / 2

The specialty of this block is that
you also have the option of
configuring the signals graphically.
You can select this interface by
double clicking on the block. You
can these use the mouse to set
values in the graphical display.

ST: cannot be called up

GET_TASK_INFO_1
Int 0 INFO_TYPE OUT | 50083 Real

GET_TASK_INFO:

Function to extract task information
corresponding to the "INFO_TYPE"
parameter.

"INFO_TYPE" =

0: EvalDeltaTime,
1: EvalTime,

2: LastTaskDuration

ST: cannot be called up

SHOWSTRING_1

String — N "String ba showy' ouT String

SHOWSTRING:
Display element for displaying
strings.

ST: cannot be called up

302

Issue 4.2.4

ibaLogic-V4

Manual

Input
data type

Block design

SLIDER_1

Real 00 Jatoie

Real L0 JEHIGE

ouT
1oUT

Output
data type

0.347 .. Real
g .
= Dint

Explanation, example,
ST syntax

SLIDER: slide controller

Depending on the position of the
slider, this function block delivers a
value at its output "OUT", where the
value lies between the limits of the
input specifications (Minimum and
maximum value). The inputs are
preset by default to 0 and 1, but can
be modified as required. (Double
click on the module and adjust the
default values)

The output "IOUT", delivers the
relative positional value of the slider
in steps of one-

thousandth (0 ... 1000).

The outputs are set only when the
mouse button releases the slider.

If the slider pointer is marked, it can
also be moved using the cursor
keys = und < .

ST: cannot be called up

SWITCH_1

Bool FALSE

VAL Of'f ouT

FALSE Bool

SWITCH: Switch

You have to click with the left
mouse button on the "OFF" icon to
switch on or off ("toggle").

In conjunction with the input, you
have an "OR" function between the
switch position and the input.

Truth table:
SWITCH VAL
ON FALSE
ON TRUE
OFF FALSE
OFF TRUE

ouT
TRUE
TRUE
FALSE
TRUE

ST: cannot be called up

Issue 4.2.4

303

Manual ibaLogic-V4

19.17 Timer

Input Block design Output Explanation, example,
data type data type ST syntax
MAKE_UTC_TIME:

P M Coding the UTC time®
Dint 2010 | YEAR
Dint 5 | MONM The function block generates the
Dint e -] e UTC time at the output "TM" from
Dint 10| MINUTE Udint the input variables "YEAR",
B::t I "MONTH", "DAY", "HOUR",
Dint "MINUTE" and "SECOND".

The local timezone® isnot taken into
consideration. You can specify the
Daylight Savings Time at the

"DST" input.

Example:
27.06.2010/08:10:30 in the
timezone GMT+01 > TM
= 1277626230

ST: cannot be called up

SET_UTC_TIME: Set the UTC time

SET_UTC_TIME_I
Udint R TN oy o Udint The function block set the "UTC
Bool ClEA S System Time" of the ibalLogic
platform (Windows PC or PADU-S-
IT) to the value at the "TMIN" input
when the input "SET" = "TRUE".
The local time zone and the
Daylight Savings Time (DST) is not
taken into consideration.
ST: cannot be called up
SPLIT_UTC_TIME:
SPUTUTC_TIME ! Decoding of UTC time in GMT.
SYS TIME [|12663... Udint
”;‘:‘*Tfl 2010 Dint The function block generates the
. - | Dint output variables, "YEAR",
Udint — 55T 8T TM HOUR 5 D|nt IIMONTHII‘ "DAY", “HOUR",
s’g(':”ctﬁ 5 B:ﬂt "MINUTE" and "SECOND" from the
o - Dint UTC time at the TM input.
Dint The local time zone is not taken into

consideration. The Daylight Savings
Time is displayed at the
"DST" output.

ST: cannot be called up

® The UTC time (Universal Time Coordinated) contains the time in seconds since 01.01.1970, 00:00
midnight, related to GMT+00.

® The information regarding the time zone and summer time (DST) is taken over from the Operating
System settings under Windows XP or Windows CE.

304 Issue 4.2.4 m

ibaLogic-V4

Manual

Input
data type

Udint

Block design

Output
data type

SPLIT_LOCAL_TIME_1

LOCAL_TIME
YEAR
MONTH

DAY

HOUR
MINUTE
SECOND
DST

— 12557, BT TM

Udint
Dint
Dint
Dint
Dint
Dint
Dint
Dint

]
g
afw

cldia|alar s

Explanation, example,
ST syntax

SPLIT_LOCAL_TIME:
Decoding of UTC time in local
time.

The function block generates the
output variables "YEAR", "MONTH",
"DAY", "HOUR", "MINUTE" and
"SECOND" from the UTC time at
the TM input.

The local time zone is not taken into
consideration. The Daylight Savings
Time is displayed at the

"DST" output.

ST: cannot be called up

Bool
Time

TOF_1

= FALSE slT IN Q FALSE

T=is PT ET

Bool
Time

T=0s

TOF: Off delay (Switch off time
delay)

If the input "IN", is "TRUE", the
output "Q", is set to "TRUE" without
any time delay. The falling edge at
the "IN" input starts the time

delay PT. After the delay time has
elapsed, the output "Q", is set to
"FALSE". The output "Q", remains
unchanged if the switch-off time of
"IN" is shorter than the time delay.
The output "ET", indicates the time
that has already elapsed.

P time (me)

ST: cannot be called up

Bool
Time

TON_1
= FALSENTIN @
s | PT L El

— Bool
- Time

TON: On delay (Switch on time
delay)

The rising edge at the "IN" input
starts the time delay PT. After the
delay time has elapsed, the
output "Q", is set to "FALSE". A
"FALSE" signal at the input "IN", is
immediately transferred to the
output "Q". The output "Q", is not
set if the switch-on time of "IN" is
shorter than the time delay. The
output "ET", indicates the time that
has already elapsed.

h

M ‘M M timi (M)

ST: cannot be called up

Issue 4.2.4

305

Manual ibaLogic-V4

Input Block design Output Explanation, example,
data type data type ST syntax

TP: Timer pulse (Pulse extension)

TP 1
= - — The rising edge at the input "IN",
Bool F.:; |.55=E ::Tr ; Fi‘,\E;E Bool sets the output "Q", for the pulse
Time - - Time time PT to "TRUE". The output "Q",

cannot be reset during the timer
pulse. The output "ET", indicates
the time that has already elapsed.

Fy

4

pt-

ST: cannot be called up

UTCTIMETOSTRING:

Converts UTC time in a formatted
string.

ST:

ouT :=
UTCTIMETOSTRING (IN) ;

UTCTIMETOSTRING_1
Udint — 13547 __j" TM oul| 2012 String

19.18 Type Conversion

Input Block design Output Explanation, example,
data type data type ST syntax
BITS_TO_INT:
BITS TO INT.1 Converts 16 bits to an integer value

Bool = TRUE s[7EIT0 .
Bool — FALSE [BITS Example:
Bool = TRUE s[EITZ 10613 =
Bool = FALSE 8[1EIT2 2#0010_1001_0111_0101,
Bool == TRUE g/~ BIT4 (BIt15 oo, Bit0)
Bool = TRUE #[7BITE
Bool = TRUE #[7BITE ST: cannot be called up
Bool == FALSE =" BITY o ETEE
Bool = TRUE #[7EBITE e Int
Bool = FALSE #[7BITS
Bool == FALSE a7 BITIO
Bool == TRUE =7 BITi1
Bool = FASE e BITIZ
Bool = TRLUE =7 BIT12

= FALSE = BITI4
ggg: = A SE o[C BITIS

306 Issue 4.2.4 m

ibaLogic-V4 Manual

Input Block design Output Explanation, example,
data type data type ST syntax
— COLLECT_ARRAY
Bool FALSE | TAKEOVER . You can use this block to transfer
Uint 0 OFFSET Any_ sections of one array to another.
Uint 2 :':L'D—S'ZEEUFFER_FULL FaLse - Derived "TAKEOVER"™
Any_ Bool As long as this input is "TRUE",
Derived data is transferred to the output
array.
"OFFSET":
This specifies the element in the
input array from which data needs
to be copied.
"VALID_SIZE":
Number of elements to be copied.
"IN"
Input array of any size.
"OuT":
Output array
"BUFFER_FULL":
Output array is full, and data has to
be read out.
ST: cannot be called up
DWORD_TO_CHAR
DWDRD_TC;_‘?H*;E}T st Conversion of a "DWORD" to four
itring ring
o cHan o = String fg_rl)%rla’\}g 'S;rt]ar:cters of
Dword [;:ig-; R String yp
CHAR 3 . String 16#22645240="'@', 'R, 'd", "™
String
ST: cannot be called up within ST
INT_TO_BITS:
INT_TO_BITS_1 Bool Converts an integer value to 16 bits
BITO[T) TRUE memmmm BoOI
BIT1 [T} FALSE e BoOI (Inverse function of BITS_TO_INT)
BIT2[} TRUE == Bool
BIT3[T) FALSE memmmm B0 ST: cannot be called up
BIT4 [T} TRUE pe— Bool
BITSIT) TRUE pe——
BITE[T) TRUE p——— Bool
z BITT | FALSE pmmm BoOI
Int 0613 | IN BITES| TRUE me= BoOI
BIT3[T| FALSE memmmm BooOI
BITIO[} FALSE pemmmm B
BITII D] TRUE pemm=' B0
BITIZ[T) FALEE pe—
BITIZ[T) TRUE — EOO:
BIT147 | FALSE pmmmm D00
BITIST | FALGE g SOO:
[o]0)

i85 Issue 4.2.4 307

Manual ibaLogic-V4

19.18.1 Limiting Converter

These conversion blocks take on a special role, since, prior to the type conversion,
they limit the range of values of the input type to the range of values of the output type.
The following example illustrates the difference with respect to a standard converter.

Limit converter: limit:dint_to int(57700) delivers the result: 32767

(First, the output value is limited to the range of values (-32768 ... 32767), and then
type conversion is carried out).

Standard dint_to_int(577000) delivers the result: -12824
converter:

(The 16 lower order bits are considered and these are converted, whereby, naturally,
the highest order bit (Bit 15) is interpreted as a sign bit.)

We recommend that you use a limiting converter if the range of values of the target
type is smaller than the range of values of the source type. This concerns the following
conversions:

INT UINT DINT UDINT REAL LREAL

INT > UINT |UNIT > INT DINT > INT UDINT - DINT REAL > DINT |LREAL > DINT

INT > SINT [UINT > SINT | DINT - UDINT | UDINT = INT REAL > INT LREAL > INT

INT > USINT |UINT 5 USINT |DINT = UINT UDINT = UINT REAL > UDINT | LREAL > REAL
DINT > SINT UINT > SINT REAL > UINT | LREAL - UDINT

DINT = USINT UINT = USINT REAL - SINT LREAL > UINT
REAL - USINT LREAL > SINT
LREAL - USINT

In Structured Text, the limiting converters are provided by the functions:
"limit_source_type to_target type"

Input Block design Output Explanation, example,
data type data type ST syntax

LIMIT_DINT_TO_INT:
LIMIT_DINT_TC_INT_1

Dint 000l IN OUT | 22768 Int Example:
-577000 => -32768;
ST:

OUT:=
limit dint to int (IN);

LIMIT_DINT_TO_UDINT:
LIMIT_DINT_TO_UDINT_1

Dint 216000 | IN ouT 0 Udint Example:

-216000 => 0;

ST:

OUT:=
limit dint to udint (IN);

LIMIT_DINT_TO_UINT:

LIMIT_DINT_TO_UINT_1
Dint TEE23 IN ouT EE535 Uint Examp|e:
75623 => 65535
ST:

OUT:=
limit dint to uint (IN);

308

Issue 4.2.4 @

ibaLogic-V4 Manual

LIMIT_INT_TO_UINT
Example:
Int Uint -100 =>0
ST:
OUT:=
limit int to uint (IN);
LIMIT_LREAL_TO_DINT:
) Example:
Lreal Dint 2.2 E+09 => 2147483648;
ST:
OUT:=
limit lreal to dint (IN);
LIMIT_LREAL_TO_INT:
Example:
Lreal Int 248758.0 => 32767
ST:
OUT:=
limit lreal to int (IN);
LIMIT_LREAL_TO_REAL
Lreal Real Example:
1E+45 => 3.402823466 E+38
ST:
OUT:=
limit lreal to real (IN);
LIMIT_LREAL_TO_UDINT:
Lreal udint Example:-1 E+12 => 0;
ST:
OUT:=
limit lreal to udint
(IN) ;
LIMIT_LREAL_TO_UINT:
Lreal Uint Example:-3 E+12 => 0;
ST:
OUT:=
limit lreal to_ uint (IN);
LIMIT_REAL_TO_DINT:
. Example:
Real Dint -2.2 E+09 => -2147483648;
ST:
OUT:=
limit real to dint (IN);
LIMIT_REAL_TO_INT:
Example: 248758.0 => 32767,
Real Int
ST:
OUT:=
limit real to_ int (IN);

@ Issue 4.2.4 309

Manual ibaLogic-V4

LIMIT_REAL_TO_UDINT:

Example:
-4000.0 =>0

ST:

OUT:=
limit real to udint (IN);

LIMIT_REAL_TO_UINT:

Example:
1*E+12 => 65535;

ST:

OUT:=
limit real to uint (IN);

LIMIT_UDINT_TO_DINT:

Example:
3123456789 => 2147483647;

ST:

OUT:=
limit udint to dint (IN);

LIMIT_UDINT_T_INT:

Real

Real

Udint

Example:
558900 => 32767

ST:

OUT:=
limit udint to int (IN);

LIMIT_UDINT_TO_UINT:

Example:
256345 => 65535

ST:

OUT:=
limit udint to uint (IN);

LIMIT_UINT_TO_INT:
Example: 48000 => 32767;
ST:

OUT:=
limit uint to int (IN);

Udint

Udint

Uint

310 Issue 4.2.4 @

ibaLogic-V4

Manual

19.18.2

Scaling Converter

Input
data type

Block design

SCALE_INT TO_LREAL 1
Int 4 IN
Int 32768 | X0
Lreal -10.0_ 5 ¥ Ul
Int I3TET x1

0.0 § Yi
Lreal

Output
data type

CNLLE Lreal

Explanation, example,
ST syntax

SCALE_INT_TO_LREAL:

This module converts an
"INTEGER" value to an "LREAL"
value and scales it linearly.

Application:

Conversion of an analog input
(Integer value -32768 ... 32767) to a
physical parameter

e. g. +/- 10 Volt.

IN:

Input value (Analog input)

X0, X1: Range of values of input
value (Int)

YO0, Y1: Range of values

Target parameter (Lreal)

Example:

4 > 0.0013733119 V

X0, X1 =-32768 / +32767
Y0,Y1= -10.0/+10.0
IN=4

OUT =0.0013733119

In

__

""""""" /

L % [LREAL)
L] >||aut|

Implementation (Type conversions
have been omitted for the sake of
clarity):
dx := x1-x0;
if (dx <> 0.0)
then
aa := (yl1 - y0) / dx;
bb := y0 - aa*x0;
out = aa*in + bb;
end 1if;

ST: cannot be called up

Important note:

Since the integer range of values is
not symmetric in principle, a 0 at the
input leads to a 0 at the output.
Since this always leads to
misinterpretations, iba AG
recommends that you specify a
symmetric range of values for the
input (-32,767/+ 32,767).

Issue 4.2.4

311

Manual

ibaLogic-V4

Input Block design Output Explanation, example,
data type data type ST syntax
SCALE_LREAL_TO_INT:
SCALE_LREAL TO_INT_1 This module converts an "LREAL"
trea: U value to an "INTEGER" value and
|nr;e ° Sz | YO ouT | 15072 Int scales it linearly.
0.0 _§ X
Lreal 32767 | Y1 Application: Conversion of physical
Int parameter
(e. g. +/- 10 Volt) to an analog
output
(Integer value -32,768 ... 32,767)
Example:
4.6V > 15072
X0, X1 = physical range (-/+ 10 V)
YO0, Y1 = range of values INT
in
: 25 IT_':ﬂ
: 2 :
i I
R e 7
i L~ iNT)
! - o ';Iloutl
Implementation (Type conversions
have been omitted for the sake of
clarity):
dx := x1-x0;
if (dx <> 0.0)
then
aa := (yl - y0) / dx;
bb := y0 - aa*x0;
out := aa*in + bb;
end if;
ST: cannot be called up
ARRAY_TO_STRUCT_1 ARRAY_TO_STRUCT:
-I- IN out | - Creates a structure from any array.
g\ny_A"ay 15500 | SWAP SIZE | 0 f*ny_Struct SIZE includes the effectively used
yte nt data size.
SWAP sets the byte swap:
16#00 Off,
16#01 depending on data type
(AB CDEF <54 BA FEDC),
16#02 2 bytes (ABCD 954 BADC),
16#04 4 bytes (ABCD 554 DCBA).
ST: cannot be called up
STRUGT._TO_ARRAY. 1 STRUCT_TO_ARRAY:
. o Any_Array Creates an array from any structure.
Anv Struct 1 IN ouT 1 \ Yy
B;zg e 16200 . i e a0 Int (Parameter see
ARRAY_TO_STRUCT)
ST: cannot be called up
312 Issue 4.2.4 i8]

ibaLogic-V4 Manual

19.18.3 Standard Converter

All standard conversion blocks are combined into one block. As soon as you drag this
block and drop it in the design area, a selection dialog box appears with which you can
define the input and output data types.

Conversion rules:

Q For target type "BOOL", the result is "FALSE" if the input has the value 0, 0.0, 16#0
or T#0ms, otherwise, "TRUE" is output.

Q For conversion of real data types to integer data types, the values are converted
numerically and rounded up or off in accordance with the rules of arithmetic. The
values are not limited.

Example: 82600.0(REAL) > 82600(DINT) = 17064(INT)

Q Conversion from "INTEGER" and "WORD" data types takes place using type
conversion without changing the bit pattern. Any limiting required is not carried out
and the higher orders bits are truncated.

Q For real data types to "WORD" data types, the value is first converted to "DINT"
numerically and then only data type conversion is done without changing the bit
pattern.

If you join two connectors of different da