

Manual
Issue 4.2.4

ibaLogic-V4

Manufacturer

iba AG

Koenigswarterstr. 44

90762 Fuerth

Germany

Contacts

Main office +49 911 97282-0

Fax +49 911 97282-33

Support +49 911 97282-14

Engineering +49 911 97282-13

E-Mail iba@iba-ag.com

Web www.iba-ag.com

This manual must not be circulated or copied, or its contents utilized and disseminated,
without our express written permission. Any breach or infringement of this provision will
result in liability for damages.

©iba AG 2013, All Rights Reserved

The content of this publication has been checked for compliance with the described
hardware and software. Nevertheless, deviations cannot be excluded completely so
that the full compliance is not guaranteed. However, the information in this publication
is updated regularly. Required corrections are contained in the following regulations or
can be downloaded on the Internet.

The current version is available for download on our web site http://www.iba-ag.com.

Protection note

Windows® is a label and registered trademark of the Microsoft Corporation. Other
product and company names mentioned in this manual can be labels or registered
trademarks of the corresponding owners.

Issue Date Revision Author Version SW

4.2.4 19.02.2013 Update Software KF 4.2.4

ibaLogic-V4 Manual

Issue 4.2.4 i

Table of Contents

1 About this manual...11

1.1 Target group.. 11

1.2 Notations ... 11

1.3 Used symbols..12

2 Introduction ...13

2.1 Identification..13

2.2 Proper Use..13

2.3 Release Notes ..13
2.3.1 Change Log File..13

3 Software Installation ...14

3.1 System Requirements...14
3.1.1 Hardware ..14
3.1.2 Software ..15

3.2 License Activation ... 16

3.3 Software Installation..17
3.3.1 Prerequisite...17
3.3.2 Procedure ...17
3.3.3 Software required..18
3.3.4 System requirements ..19
3.3.5 Choose components ...20
3.3.6 Choose Installation Location ...21
3.3.7 Select SQL server ...21
3.3.8 Complete ibaLogic installation ..23

4 ibaLogic Software ...24

4.1 Introduction ...24

4.2 Areas of Application ..25

4.3 The ibaLogic Components ..27
4.3.1 Runtime system (PMAC)...28
4.3.2 ibaLogic Server ...28
4.3.3 ibaLogic Client ..28
4.3.4 OPC Server...28

4.4 Multi-client Operation and other System Configurations................................. 29

4.5 Operating and Processing Modes...31

4.6 Structure of an ibaLogic application ..32
4.6.1 Task / Program Properties...32
4.6.2 Program Elements ..33
4.6.2.1 Function blocks...33

 Manual ibaLogic-V4

ii Issue 4.2.4

4.6.2.2 Graphics Programming.. 34
4.6.2.3 Comments.. 34
4.6.2.4 Data types available... 34
4.6.2.5 Integrated measurement using ibaPDA Express... 35
4.6.2.6 Measured value storage .. 35

4.7 Connectivity .. 36

5 ibaLogic Server... 37

5.1 Functional overview of the ibaLogic Server .. 37

5.2 Start ibaLogic Server... 38

5.3 User Interface – ibaLogic Server .. 40

5.4 ibaLogic Server Setting... 41
5.4.1 Configuring the Client port .. 41
5.4.2 Configuring the Database Connections .. 42
5.4.2.1 Connect database.. 42
5.4.2.2 Configuring the Database Interface ... 44
5.4.2.3 Select SQL server.. 45
5.4.2.4 Manage Database scripts .. 46
5.4.3 Options.. 47
5.4.3.1 Activate Autostart Server ... 47
5.4.3.2 Configure General ibaLogic Server Options .. 49
5.4.3.3 Settings for the Local PMAC.. 50
5.4.3.4 Language ... 52
5.4.4 Status bar.. 53

6 Programming Environment – ibaLogic Client .. 54

6.1 Start ibaLogic Client .. 54

6.2 User Interface of Programming Environment – Editor 55
6.2.1 Menu Bar .. 55
6.2.2 Toolbar .. 55
6.2.3 Navigation Area... 56
6.2.3.1 Switch Views in Workspace Explorer .. 57
6.2.3.2 Instances.. 58
6.2.3.3 Definitions .. 59
6.2.3.4 Hierarchy.. 60
6.2.3.5 Evaluation Order .. 60
6.2.4 Program Designer... 62
6.2.5 Arrangement of the Tabs and Programming Windows.................................... 63
6.2.5.1 Arrange tabs .. 63
6.2.5.2 Arrange programming windows ... 63
6.2.5.3 Navigating in the Program Designer.. 65
6.2.6 Synchronize Access (<Read write>/<Read only> buttons)............................. 68
6.2.7 Events Window ... 68
6.2.7.1 Local Events .. 69
6.2.7.2 Server Events .. 69
6.2.7.3 All Events ... 69
6.2.7.4 Console View ... 69

ibaLogic-V4 Manual

Issue 4.2.4 iii

6.3 Workspace ..70
6.3.1 Create Workspace ..70
6.3.2 Open workspace ...71
6.3.3 Close Opened Workspace ..71
6.3.4 Remove Workspace from the Database ...72

6.4 Workspace Projects ..73
6.4.1 Create Project ...73
6.4.2 Set Project as Active ...74
6.4.3 Load Project in the Program Designer ..75
6.4.4 Edit Project Properties ..75
6.4.5 Remove Project...75

6.5 Tasks/Programs ..76
6.5.1 Create Tasks / Programs...76
6.5.2 Open Tasks/Program ..77
6.5.3 Change Task / Program Properties ... 77
6.5.4 Remove Task / Program..78
6.5.5 Import / Export Programs..78

6.6 Configure Inputs and Outputs ...80
6.6.1 Create Signals...81
6.6.1.1 Define Group ..81
6.6.2 Define Signals...82
6.6.3 Edit Existing Signals..84
6.6.4 Remove Signals..84
6.6.5 Export / Import Signals..86
6.6.6 Using Signals in the Program..88
6.6.7 Remove Signals in the Program ...89

7 Program Creation..90

7.1 Blocks ...90
7.1.1 Using Blocks ...91
7.1.2 Create User Blocks ...92
7.1.2.1 In the Program..92
7.1.2.2 Under the project ..92
7.1.2.3 In the Global Library ...92
7.1.3 Managing Blocks...93
7.1.4 Exporting Blocks ...93
7.1.5 Importing Blocks..94
7.1.6 Removing Blocks ..95

7.2 Standard Blocks ..96

7.3 Complex Function Blocks.. 96
7.3.1 DAT_FILE_WRITE (DFW Function Block).. 96
7.3.1.1 Function Block Edit DFW..96
7.3.1.2 "General Configuration" Sub-tab ..98
7.3.1.3 Sub-tab "Signal configuration"..102
7.3.1.4 Generate Storage Structure ...104

 Manual ibaLogic-V4

iv Issue 4.2.4

7.3.2 TCPIP_SENDRECV ... 105
7.3.2.1 Inputs ... 106
7.3.2.2 Outputs... 107
7.3.3 PIDT1_CONTROL .. 107
7.3.3.1 Inputs ... 109
7.3.3.2 Outputs... 109
7.3.3.3 Details / Signal trends .. 110
7.3.3.4 P component: (Parameter: KP, EN_P) .. 111
7.3.3.5 I component: (Parameters KP, TN, SET, SV, HI and EN_I)...................................... 112
7.3.3.6 DT1 component: (Parameters KV,T1 and EN_D) ... 113
7.3.3.7 PIDT1 component – Total response .. 115
7.3.4 RAMP.. 116
7.3.4.1 Inputs ... 117
7.3.4.2 Outputs... 117
7.3.4.3 Example ... 118
7.3.5 FUZZY_CONTROLLER.. 120
7.3.5.1 Inputs ... 121
7.3.5.2 Outputs... 121

7.4 User-specific Function Blocks... 123
7.4.1 Function Blocks... 123
7.4.1.1 General Settings .. 124
7.4.2 Structured Text Editor.. 127
7.4.2.1 IntelliSense .. 128
7.4.2.2 Syntax Description of Structured Text ... 128
7.4.2.3 Operators ... 129
7.4.2.4 Statements... 129
7.4.2.5 Constants ... 131
7.4.2.6 Strings .. 132
7.4.3 Macro block... 133
7.4.3.1 Creating a Macro Block.. 133
7.4.3.2 Opening a Macro ... 134
7.4.3.3 Combining existing components into a Macro Block ... 134
7.4.3.4 Expanding a Macro Block .. 135
7.4.4 Creating your own DLLs ... 136
7.4.4.1 Source Files and Descriptions Required ... 137
7.4.4.2 Requirements and Notes ... 137
7.4.4.3 Integrating the DLL into ibaLogic ... 137

7.5 Data types... 139
7.5.1 Define Data Type .. 139
7.5.1.1 Under the project ... 141
7.5.1.2 In the global library... 141
7.5.1.3 When creating a Function Block .. 141
7.5.2 Modify Data Type .. 142
7.5.3 Delete Data Type .. 142
7.5.4 Manage Data Type.. 142
7.5.5 Export Data Type .. 143
7.5.6 Import Data Type... 144
7.5.7 Use Data Type .. 144

ibaLogic-V4 Manual

Issue 4.2.4 v

7.5.7.1 During the Creation of a Function Block...144
7.5.7.2 During the Creation of a Structure Data Type..144
7.5.8 User-defined Data Types ..144
7.5.8.1 DIRECT DERIVED TYPE Group..145
7.5.8.2 SUBRANGE TYPE Group..145
7.5.8.3 STRING DERIVED TYPE Group ...145
7.5.8.4 ENUM TYPE Group..146
7.5.8.5 ARRAY TYPE Group..148
7.5.8.6 STRUCT TYPE Group..149

8 Program Elements ..151

8.1 Create Program Element ..151

8.2 Mark Program Elements ...151

8.3 Move Program Element ..152

8.4 Align Program Elements along an Edge ...152

8.5 Copy Program Element...153

8.6 Delete Program Element...153

8.7 Generate Input / Output Variables...153

8.8 Graphical Connections..154
8.8.1 Direct Connectors ...154
8.8.1.1 Types of connection lines ...154
8.8.1.2 Create Direct Connector...154
8.8.1.3 Modify Direct Connectors ...155
8.8.2 Intra-Page Connectors ..155
8.8.2.1 Create Intra-Page Connectors ...155
8.8.2.2 Modify IPC Names..156
8.8.2.3 Track IPC..156
8.8.3 Off-Task Connectors ...157
8.8.3.1 Create Off-Task Connectors...157
8.8.3.2 Rename OTC ...159
8.8.3.3 Track OTCs ..160
8.8.3.4 List of all OTCs ...161
8.8.3.5 Display ..161

8.9 Converters, splitters, joiners.. 162
8.9.1 Converter ..162
8.9.2 Splitter ...163
8.9.3 Joiner ..163

8.10 Comments...164

9 PMAC Runtime System ..165

9.1 Overview of Online and Offline Modes.. 165

9.2 Start Runtime System ...165

9.3 Stop the Runtime system ..166

9.4 Runtime System – Autostart..167
9.4.1 Save program on the PMAC ...167

 Manual ibaLogic-V4

vi Issue 4.2.4

9.4.2 Delete Program on the PMAC .. 168

9.5 Connect/disconnect .. 169

10 Platforms ... 171

10.1 Configuring the Platform ... 172

10.2 Selecting the Platform... 174

11 IO Configuration ... 175

11.1 Resources... 176
11.1.1 Hardware Resources .. 178
11.1.2 Software Resources.. 179
11.1.3 Global System Variables... 179

11.2 Hardware Configuration .. 180
11.2.1 General Settings ... 180
11.2.2 Card Settings .. 181

11.3 Signal assignment... 182
11.3.1 Method as seen from the hardware .. 182
11.3.1.1 Example: Assignment of all signals of a module of an ibaFOB-io-S card 183
11.3.1.2 Example: Assignment of individual signals of an ibaFOB-4i-S or ibaFOB-4o-S card 185
11.3.1.3 Change Signal and Group Names... 186
11.3.2 Procedure as seen from the program ... 186
11.3.2.1 Example: Signals of an ibaFOB-4io-S card (complete module) 186
11.3.3 Modify Signal Assignment... 188
11.3.4 Using externally defined signal names ... 188

11.4 PCI Interfaces (Windows PC) ... 190
11.4.1 Connection to the "iba World" ... 190
11.4.1.1 Card Settings ... 190
11.4.1.2 Link Settings .. 191
11.4.2 Buffered Mode .. 192
11.4.2.1 Applications.. 192
11.4.2.2 Input Resources... 193
11.4.2.3 Output Resources .. 194
11.4.3 ibaLogic as Profibus Slave.. 195
11.4.3.1 Card Settings ... 195
11.4.3.2 Settings for bus interface 0/1 ... 196
11.4.4 ibaLogic as Profibus Master.. 196
11.4.4.1 Brief Description... 197
11.4.4.2 Card Settings ... 197
11.4.4.3 Configuration.. 198
11.4.4.4 Peculiarities with signal assignment .. 198
11.4.5 SIMADYN D / SIMATIC TDC Connection ... 199
11.4.5.1 Card settings.. 200
11.4.5.2 Link settings ... 200
11.4.5.3 Communication Settings .. 201
11.4.6 Reflective Memory .. 201
11.4.6.1 Brief Description... 202
11.4.6.2 Card Settings ... 202

ibaLogic-V4 Manual

Issue 4.2.4 vii

11.4.6.3 Configuration ..202
11.4.6.4 File ..203
11.4.6.5 Flow of Setting Parameters ..204

11.5 ibaPADU-S-IT Platform ...204
11.5.1 Settings ...205

11.6 TCP/IP Communication...206
11.6.1 TCP/IP Connection Settings ...206

11.7 OPC Communication ..207
11.7.1 OPC Server...207
11.7.2 Setting the OPC Variable Parameters... 209

12 Database Management ...210

12.1 Backup Database..210
12.1.1 Manual Database Backup ...210
12.1.2 Automatic Database Backup... 211

12.2 Restore Database ...214

12.3 Reset Database ..216

13 Program Analysis, Debugging and Time behavior.....................................217

13.1 ibaPDA Express ..217
13.1.1 Controlling the Signal Display ...218
13.1.2 Select Signals ...218
13.1.3 Move signal ...219
13.1.4 Mark the signals with color.. 220
13.1.5 Remove Signal from the Display... 220
13.1.6 Remove Graphs from the Display ... 220
13.1.7 Scale Axes ..221
13.1.7.1 Auto scaling ..221
13.1.7.2 Scaling with the mouse...221
13.1.7.3 Scaling using the display settings ..222
13.1.8 Move Scales ...222
13.1.9 Zoom Function ..223
13.1.9.1 Zooming in (Enlarge) ..223
13.1.9.2 Zoom out (Reduce)...223
13.1.10 Trend graph Properties ...224
13.1.10.1 Miscellaneous...225
13.1.10.2 Colors ...225
13.1.10.3 Fonts...226
13.1.10.4 Signals ..226
13.1.10.5 X-axis..226
13.1.10.6 Y-axis..227
13.1.10.7 Scientific notation ...227
13.1.10.8 Scaling mode..228
13.1.11 Extended Functionality..228

13.2 Time behavior ...230
13.2.1 Evaluation time ... 231

 Manual ibaLogic-V4

viii Issue 4.2.4

13.2.2 Turbo mode... 231
13.2.3 Messung ... 232
13.2.4 Soft PLC.. 232
13.2.5 Time considerations with multiple tasks.. 233
13.2.6 Worst-case considerations.. 234
13.2.7 Explanation of the case above.. 234
13.2.8 Task evaluation with time shift .. 235

13.3 Debugging... 237
13.3.1 Program errors.. 237
13.3.1.1 Errors in user-defined function blocks ... 237
13.3.1.2 Division by 0... 237
13.3.1.3 Incorrect signal trends.. 237
13.3.1.4 Evaluation sequence.. 237
13.3.2 Compilation errors... 238

13.4 Performance Limits ... 240
13.4.1 Example .. 240

14 Programming rules... 242

14.1 Approach for the solution .. 242

15 Uninstall ibaLogic... 245

16 Practice Examples .. 248

16.1 First Steps - Sample Project ... 248
16.1.1 Sample Exercise Part 1 .. 249
16.1.1.1 Task Description .. 249
16.1.1.2 Start ibaLogic Server and ibaLogic Client.. 250
16.1.1.3 Create a New Project... 251
16.1.1.4 Placing the Test Tools ... 252
16.1.1.5 Placing the evaluation blocks .. 253
16.1.1.6 Connecting the selector block with the test tools... 254
16.1.1.7 Configuring the slider and generator ... 255
16.1.1.8 Switch the partial connections online... 256
16.1.1.9 Testing the switch and selector ... 257
16.1.1.10 Connecting the adder... 258
16.1.1.11 Create an OTC to illustrate the result .. 258
16.1.1.12 Analysis of the circuit ... 259
16.1.2 Sample Exercise Part 2 .. 260
16.1.2.1 Program analysis using the ibaPDA Express .. 260
16.1.3 Sample Exercise Part 3 .. 261
16.1.3.1 Procedure... 261
16.1.3.2 Remark... 262
16.1.4 Sample Exercise Part 4 .. 262
16.1.4.1 Procedure... 263
16.1.4.2 Remark... 264
16.1.4.3 Result ... 265
16.1.4.4 Remarks... 266

16.2 DAT_FILE_WRITE Sample Project... 267

ibaLogic-V4 Manual

Issue 4.2.4 ix

16.2.1 DAT_FILE_WRITE in "Unbuffered" Mode... 267
16.2.1.1 Step 1: Configure the DFW block...267
16.2.1.2 Step 2: Connection of the DFW..268
16.2.1.3 Step 3: Create other measure signals..269
16.2.1.4 Step 4: Starting the recording...270
16.2.1.5 Alternative: Programming Joiner in ST...270
16.2.2 DAT_FILE_WRITE in "Buffered Mode" ...271
16.2.2.1 Step 1: Configuration of the buffered inputs...272
16.2.2.2 Step 2: Set the parameters of the DFW module, "General Configuration"273
16.2.2.3 Step 3: Accept the buffered input signals...274
16.2.2.4 Step 4: Transfer the data to DAT_FILE_WRITE ..275
16.2.2.5 Step 5: Wiring (Connecting) the remaining inputs..275
16.2.2.6 Step 6: Starting the recording...276

17 Naming conventions...277

18 Data types..278

18.1 Standard data types ..278

18.2 Derived data types ..278

18.3 Generic data types ..279

19 Standard Function Blocks..280

19.1 Table interpretation..280

19.2 Data types ...280

19.3 Block type with function diagram display .. 281

19.4 Analytical Functions ..282

19.5 Arithmetical Functions... 284
19.5.1 General ...284
19.5.2 Logarithmic ...284
19.5.3 Trigonometric ..285
19.5.4 Miscellaneous ...286

19.6 Bistable ...288

19.7 Bit String..289
19.7.1 Bit shift ..289
19.7.2 Bitwise_Boolean ...290

19.8 Character String ..291

19.9 Communication ...292

19.10 Comparison...293

19.11 Counter ...295

19.12 Edge Detection ...296

19.13 Register...297

19.14 Selection ...298

19.15 Signal Processing ...300

19.16 Specials...301

 Manual ibaLogic-V4

x Issue 4.2.4

19.17 Timer ... 304

19.18 Type Conversion ... 306
19.18.1 Limiting Converter... 308
19.18.2 Scaling Converter ... 311
19.18.3 Standard Converter... 313

20 Error Codes... 314

20.1 DAT_FILE_WRITE Error Codes ... 314

20.2 TCPIP_SENDRECV Error Codes ... 314

21 Characteristics of TCP/IP... 318

21.1 Number of TCP/IP connections possible .. 318

21.2 Delayed Acknowledge Problem .. 318

22 Key Combinations .. 320

22.1 Client... 320

22.2 Mouse Functions in the Programming Field ... 320

22.3 ibaPDA Express .. 321

23 Character tables.. 322

24 Index of Abbreviations ... 324

25 Classified Index .. 326

26 Support and contact ... 330

ibaLogic-V4 Manual

Issue 4.2.4 11

1 About this manual

This documentation describes the function, the design and the application of the
software ibaLogic-V4.

1.1 Target group

This manual addresses in particular the qualified professionals who are familiar with
handling electrical and electronic modules as well as communication and measurement
technology. A person is regarded as professional if he/she is capable of assessing
safety and recognizing possible consequences and risks on the basis of his/her
specialist training, knowledge and experience and knowledge of the standard
regulations.

1.2 Notations

In this manual the following notations are used:

Action Notation

Menu command Menu "Logic diagram"

Calling the menu command „Step 1 – Step 2 – Step 3 – Step x”

Example:
Select the menu "Logic diagram - Add - New function
block".

Keys <Key name>

Example:
<Alt>; <F1>

Press the keys simultaneously <Key name> + <Key name>

Example:
<Alt> + <Ctrl>

Buttons <Key name>

Example:
<OK>; <Cancel>

File names, paths "Filename", "Path"

Example:
"Test.doc"

 Manual ibaLogic-V4

12 Issue 4.2.4

1.3 Used symbols

If safety instructions or other notes are used in this manual, they mean:

The non-observance of this safety information may result in an imminent risk of death
or severe injury:

 From an electric shock!

 Due to the improper handling of software products which are coupled to
input and output procedures with control function!

The non-observance of this safety information may result in a potential risk of death or
severe injury!

The non-observance of this safety information may result in a potential risk of injury or
material damage!

Note

A note specifies special requirements or actions to be observed.

Important note

Note if some special features must be observed, for example exceptions from the rule.

Tip

Tip or example as a helpful note or insider tip to make the work a little bit easier.

Other documentation

Reference to additional documentation or further reading.

ibaLogic-V4 Manual

Issue 4.2.4 13

2 Introduction

2.1 Identification

PAC (Soft PLC) and signal manager "ibaLogic-V4".

2.2 Proper Use

The product / system is used for the measurement and control of technical
plants and systems.

ibaLogic is not designed for safety-related systems.

Any other or extended use of the product / system is deemed to be improper, and
hence, misuse. In this case, the safety and protection of the product / system may get
impaired or compromised. iba AG is not liable for any loss or damage resulting from
such misuse.

Danger by enabling functions or other services!

Possibility of human injuries and damage to machinery by enabling functions and
other services (PMAC, OPC …), which have direct impact on the response of the
system.

Secure the system while working on it! Follow the safety regulations applicable!

2.3 Release Notes

2.3.1 Change Log File

A change log file (changelog.htm) for your software is available on the installation
media. It contains, among others, important information on the following topics:

 New functions

 Error corrections

 Manual ibaLogic-V4

14 Issue 4.2.4

3 Software Installation

3.1 System Requirements

3.1.1 Hardware

The hardware requirements are listed in the following table.

 Minimum requirement Recommended or higher

CPU speed 1600 MHz 2000 MHz

Number of CPUs 1 2

RAM 768 MByte 2048 MByte

Screen resolution 1024 x 768 1280 x 1024

The minimum memory requirement is about 650 MB. An SQL server express database
can grow in size up to 4 GB. Keep sufficient free memory space for your requirements.
For more information, please refer to "Performance Limits, Page 240".

Note

Installation is possible if the minimum requirements are not met. However,
performance limitations may arise.

ibaLogic-V4 Manual

Issue 4.2.4 15

3.1.2 Software

One of the following Operating Systems must be pre-installed:

 Windows XP Professional SP3

 Windows 2003 server

 Windows 7 SP1 32bit

Note

Administrator rights are required for both the installation and operation of the ibaLogic
Server and Client.

The software packages listed below are part of the CD supplied:

 Windows Installer 3.1

 MDAC 2.81

 .Net Framework 2.0 SP1

 MS SQL Server Express 2005 (9.0)

 OPC Core Components 2.0

 ibaWDM driver

 CB-USB Dongle driver

 Visual J# 2.0

The installation wizard checks whether the versions of various software packages are
available. If any software packages are missing or are an older version, they are
installed by the installation wizard or updated.

 Manual ibaLogic-V4

16 Issue 4.2.4

3.2 License Activation

The dongle is already customized at the time of delivery. The customer dongle
generates a virtual key in the system that unlocks or activates various functions.

Danger due to switching off the runtime system PMAC after removing the
dongle!

The system cannot be commissioned without the dongle having the associated
license. The license determines the unlocking or activation of functions.
Thus, leave the dongle inserted during the entire operation!

If the dongle is removed during the operation, the PMAC (Programmable
Measurement and Automation Controller) switches off following repeated warnings
(ca. 5 min after the first warning).

The PMAC does not start without a dongle. Instead, an alternative demo version of the
PMAC can be enabled in the ibaLogic Server options (see "Settings for the Local
PMAC, Page 49"). If the PMAC is started manually or automatically by the ibaLogic
Server, a warning message occurs saying that no dongle is inserted.

The demo version does not support hardware access, instead, several devices are
simulated. Here, if possible, the outputs used are directly reconnected to the inputs
(not possible e.g. with buffered inputs).

Several function blocks are disabled, i.e. they are configurable in the plan, but are not
calculated, this includes among others: TCPIP_SendRecv, DatFileWrite, User-DLLs.

figure 1: Dongle

ibaLogic-V4 Manual

Issue 4.2.4 17

Procedure

 Connect the dongle to a USB interface.

After starting the server and the client, the following message appears in the console
view: "Online Server: DriverStatus: Driver running for Dongle Vxxxxxx".

Note

This message only occurs, if a project has been started.

3.3 Software Installation

Follow the instructions of the installation wizard to install the ibaLogic software.

3.3.1 Prerequisite

 Your system meets the requirements of the hardware and software.

3.3.2 Procedure

 Double click on the file "Setup-4.x.xx.exe".

 Manual ibaLogic-V4

18 Issue 4.2.4

3.3.3 Software required

The components required and their versions are specified under "Software".

Presentation Explanation

Version number green Software is installed with adequate functionality.

Version number red

Software is not installed or inadequate. The associated
<Installation> button is enabled.

 Install or update the software component(s) by clicking on the <Installation>
button that is enabled.

 If required, confirm this in the dialog window that appears. If all software
components have been installed or updated, click on <Next>.

ibaLogic-V4 Manual

Issue 4.2.4 19

3.3.4 System requirements

The system requirements are checked prior to installation of the software components.

Presentation Explanation

Green The recommended requirements have been met.

Orange The minimum requirements have been met.

Red The minimum requirements have not been met.

 If the system requirements meet the minimum requirements, continue the
installation.

 Manual ibaLogic-V4

20 Issue 4.2.4

3.3.5 Choose components

You can use the "Installation type" selection field to choose components prior to the
installation.

Installation type Explanation

Complete All components are installed.

Only server Only the ibaLogic Server components are installed.

Only client Only the ibaLogic Client is installed.

User defined It is possible to choose the components. Only the components selected are
installed.

 Define the ibaLogic components by selecting the installation type.

The "ibaLogic Database" option is not set in case of an update. When the option is set,
the existing database including its projects are deleted in the course of installation.
"The database already exists and will be overwritten" is displayed as a warning
message.

ibaLogic-V4 Manual

Issue 4.2.4 21

3.3.6 Choose Installation Location

The ibaLogic folder structure (server, client etc.) is created in this folder. iba
recommends using the default folder specification.

 Define the target folder.

3.3.7 Select SQL server

If the "ibaLogic Database" check box has been enabled when installing, the installer
searches for Microsoft SQL servers on the local computer during the installation
process and offers you the "Select SQL server" dialog for selecting the database
instance.

 Select the "<PC name>\IBA" default instance or an instance of your choice and quit
the dialog window using the <OK> button.
The ibaLogic database selected is installed on the server selected.

 Manual ibaLogic-V4

22 Issue 4.2.4

Note

Any existing ibaLogic database can be overwritten after confirmation in the dialog
window that appears. If you exit this dialog window using the <No> button, the existing
database remains unchanged.

ibaLogic-V4 Manual

Issue 4.2.4 23

3.3.8 Complete ibaLogic installation

Complete ibaLogic installation

 Click on the <Finish> button to complete the installation.

 Manual ibaLogic-V4

24 Issue 4.2.4

4 ibaLogic Software

4.1 Introduction

iba AG has already specialized in the field of measured value acquisition in heavy
industry plants for many years. The segment focus has been on plants for the
production and processing steels and non-ferrous metals.

The programs for the acquisition1 and analysis2 of the data recorded are in use all
across the globe today, and are deployed by all large suppliers of machinery and
automation technology worldwide.

As a result of the wide-ranging options for the connection of the iba measurement
technology to the most diversified automation technologies and generations,
particularly even to the most prevalent field and drive buses, the need to connect
these, at times, highly diverse worlds, developed rather quickly. From now on,
"unidirectional flow" of measurement needs to become "bidirectional flow" for
information exchange between various automation systems – this is typical for the
upcoming market of modernization or revamping of automated systems that are
already in existence.

In order to address this requirement, iba AG has already developed a freely
programmable signal manager since 1995. The standard, IEC 61131-3, which had
already been formulated during this period, for describing technical work flows with the
help of graphics elements and easily embedded programming techniques, simplifies
the descriptions of complex signal processes considerably.

The graphical mode of programming3 that has been derived from this standard, forms
the basis of almost all automation systems today. As a result, graphics programming is
compatible and portable to a large extent.

Features:

 Onlinechange

 Permanent project backup

 On-the-fly input check

 Visualization and trace tool (ibaPDAExpress)

1 ibaPDA
2 ibaAnalyzer
3 FBD is a graphical programming language, in which function blocks are interconnected with one another
instead of a sequence of textual commands, as in the case of classical programming languages. Circuit
diagrams of hardware development can be considered a model in this case. This representation of a
program meets the requirements of developers of controller software, whose technical background is
typically one of electrical engineering. The various function blocks are themselves often created using other
PLC languages, . such as, for example, "structured text", and can be supplied as standard blocks by the
manufacturer of the automation systems or written by the user himself or they can even be imported.

ibaLogic-V4 Manual

Issue 4.2.4 25

4.2 Areas of Application

ibaLogic is used for the following applications:

figure 2: Areas of Application

Signal management

You can establish links between the most diverse generations of automation systems
from the largest variety of manufacturers with the with the help of iba connectivity.

Bi-directional data exchange enables communication with controllers that are otherwise
incompatible.

SPS-co-processor

In this area of application, the ibaLogic plays the role of a co-processor.

The vertical green lines in the figure "Areas of application" represent the sampling time
of the original automation equipment. Data is transmitted after one PLC clock
pulse (T1) to the Soft PLC (ibaLogic). Complex calculations can be performed in real
time and the results transmitted back before T2 using the PC processing power and the
PC data formats available. Modernizations or revamps, too, can be implemented with
the help of such methods: Open-loop and closed-loop control and regulations functions
of the "old" PLC are taken over by the new ibaLogic automation system step by step.

Observation of measurements and status (Condition Monitoring)

Apart from the use as a signal manager, it was also desired to involve ibaLogic for
complex measurement tasks, which would not have been possible using a standard
PDA. Integrating a block for measured value sampling is one of the core functions of
ibaLogic. You can achieve event-driven management of measurement tasks and save
the values on various media using this "DAT_FILE_WRITE". You can then process and
analyze the data using various iba tools, e. g. ibaAnalyzer, ibaDatCoordinator, etc.

 Manual ibaLogic-V4

26 Issue 4.2.4

Automation (Control & Regulation)

The graphical programming language described in the IEC 61131-3 standard forms the
basis of ibaLogic. This language has been conceived particularly for programmable
logic controllers (PLC). The developments in recent years have shown that the market
for measurement and control systems is growing together increasingly. The logical
consequence is that ibaLogic can obviously also be used for automation tasks as a full-
fledged PLC.

If, in the process, the tasks of the Operating and Runtime system are handled by a PC,
then one speaks of a PC-aided Soft PLC or PAC, in short (Programmable automation
controller).

ibaLogic permits demarcation of the Runtime system of the PC into a secondary stand-
alone intelligence system, ibaPADU-S-IT. In such a case you can shut down the PC
without stopping the Runtime system. The PC is used as a development station in such
cases, as in all other PLC systems.

Simulator

The simulator is an active one and an application that is programmed using ibaLogic.
HMI visualization presents the operator interface and the result of the simulation. The
standard OPC interface is used to establish the connections between ibaLogic
simulation and the HMI.

ibaLogic-V4 Manual

Issue 4.2.4 27

4.3 The ibaLogic Components

ibaLogic is based on the server-client model. This architecture facilitates decentralized
and multi-client operation.

ibaLogic is composed of the following components:

 Runtime system (PMAC)

 ibaLogic Server

 ibaLogic Client

 Database

 OPC Server

figure 3: ibaLogic Components

Database

OPC Server

ibaLogic Server

Runtime system "PMAC"

ibaLogic Client

In the simplest case, both the components mentioned above are located in one
computer. However, you can also run these components on separate computers.

 Manual ibaLogic-V4

28 Issue 4.2.4

4.3.1 Runtime system (PMAC)

By starting an ibaLogic project in the ibaLogic Client, it gets compiled and loaded in the
"Programmable Measurement and Automation Controller" (PMAC). This Runtime
system can be located on a Windows computer (as Windows service) or on a Windows
CE-compatible device (ibaPADU-S-IT).

The Runtime system continuously returns values that are calculated currently to the
client. These are displayed on-line in the graphical user interface of the project.

If a project has been transferred to the Runtime system and started, it is capable of
running independently without the server / client running.

4.3.2 ibaLogic Server

ibaLogic is a database-based system. The ibaLogic Server takes over the management
of the database and the communication between the ibaLogic Client and the Runtime
system as the central manager.

All ibaLogic projects are managed by the ibaLogic Server in a database.

ibaLogic uses the unlicensed Microsoft SQL Express database. During installation, a
Microsoft SQL Express server with the associated database is installed if it is not
already present.

The ibaLogic Server dialog is also used to backup and restore ibaLogc applications.
The backup of the database is saved in an external file.

If there are any modifications made to ibaLogic projects, these are automatically saved
in the database. Specific saving during the customization of a project is omitted.

4.3.3 ibaLogic Client

The ibaLogic Client is the programming environment in which ibaLogic projects are
programmed and configured. An ibaLogic Server must be connected for this purpose.
This ibaLogic Server can be present on the same computer or in the network.

Over and above this, the ibaLogic Client controls loading, starting and stopping an
ibaLogic project in the Runtime system with the help of the ibaLogic Server.

4.3.4 OPC Server

The OPC Server provides all variables, which have been declared as OPC visible, to
the OPC Clients connected. In general, OPC Clients are HMI (Human Machine
Interface) systems. By default, the OPC Server runs on the same machine as the
ibaLogic Server, but it can also be explicitly started on other computers in the network,
and is then connected directly with the PMAC via TCP/IP independently.

ibaLogic-V4 Manual

Issue 4.2.4 29

4.4 Multi-client Operation and other System Configurations

figure 4: Possible system configuration

Database HMI

ibaLogic Server

Runtime system "PMAC"

ibaLogic Client

PADU-S-IT

OPC Server

In the simplest case, ibaLogic can run with all its components on a single Windows
computer.

Alternatively, the ibaLogic components can also be distributed and run on different
computers. There are 3 ibaLogic applications in the sample configuration illustrated
above. One runs on a PC and 2 others on separate PADU-S-IT systems. The central
server has a connection to one database in which all 3 projects are backed up. Only
one ibaLogic workspace is always loaded on this server from the database, which can
contain three projects corresponding to the three PMACs.

It is possible to control and monitor the workspaces from different computers in multi-
client mode of operation.

Important Note

Only one client at a time should carry out modifications regarding the projects of a
server.

 Manual ibaLogic-V4

30 Issue 4.2.4

However, only one project / application as selected is always "active" in one
workspace. You can only work with and monitor this active PMAC online.

The HMI system can be fed information via the OPC Server. No OPC Server can run
on the PADU-S-IT. As a result, HMI data from and to the PADU-S-IT head units must
run via this Windows computer.

ibaLogic-V4 Manual

Issue 4.2.4 31

4.5 Operating and Processing Modes

ibaLogic provides a range of operating modes in order to meet the various
requirements of different applications. Several processing modes have been
implemented since ibaLogic works not only as a soft PLC, but also as a signal
manager, signal processor or simulator.

You can choose the following modes of operation in ibaLogic:

 Measurement

 Soft PLC

Set operating mode

Procedure

1. Select "Tools – I/O configurator" in the menu. The "I/O configurator" window is
displayed.

2. You will find the operating mode options in the tab "Hardware configuration –
 General settings".

3. Activate the operating mode to be used under "General settings".

4. Finally, click on <Accept>.

5. If you wish to close the I/O configurator, click on <OK>.

You can choose the following processing modes in ibaLogic:

"Buffered mode" (= Packet transmission)

For explanations, please refer to "Time behavior, Page 230" and "Buffered Mode, Page
192".

Set processing modes

Procedure

1. In the tree on the left, mark the hardware whose processing modes you would like
to set. The "Hardware configuration" tab for this hardware is displayed.

2. Activate the desired mode under "Connection settings".

3. Finally, click on <Accept>.

4. If you wish to close the I/O configurator, click on <OK>.

Note

For more information, please refer to "General Settings, Page 180".

 Manual ibaLogic-V4

32 Issue 4.2.4

4.6 Structure of an ibaLogic application

An ibaLogic project application consists of the following elements:

Workspace

 Project 1

 Task 1 / Program 1

 Task 2 / Program 2

 Task n / Program n

 Project 2

 Task 1 / Program 1

 Task 2 / Program 2

 Task n / Program n

 Project n

You can assign the programs with their properties (task interval etc.) to one project
each. The projects, in turn, are organized in a workspace.

One project is assigned to one Runtime system / PMAC. Only one project is set as
active within one workspace, i. e. only this active project can be started or stopped.

Note

Only one project can be active within a given application.

4.6.1 Task / Program Properties

According to IEC 61131-3, several programs can be assigned to one task. ibaLogic
supports fixed assignment of one program to one task.

The following properties can be assigned to each task:

 Interval time

 Priority

The interval time determines the time slot in which the task is restarted. The minimum
time slot for the interval time is 1 ms.

The priority setting determines the sequence in which the interval programs of a project
are executed, starting with priority 0.

Note

The program properties "Interval time" and "Priority" are considerably significant for
the project performance. For more detailed information on these program properties,
please refer to "Time behavior, Page 230" and "Performance Limits, Page 240".

ibaLogic-V4 Manual

Issue 4.2.4 33

4.6.2 Program Elements

An ibaLogic program may consist of the following elements:

 Function Blocks

 Function blocks of the integrated standard library

 Function blocks created by the user with structured text

 Macro blocks created by the user

 DLL-based function blocks created by the user

 Linking elements

 Hardware input and output signals

 Comments

4.6.2.1 Function blocks

ibaLogic has a library of function blocks. This library contains standard function blocks
in accordance with IEC 61131-3 and also supplementary function blocks.

You can combine these into a macro block to have a clearer program structure and
provide encapsulation of various graphics subprograms.

You also have the option to create a separate block yourself that is required for a
specialized solution to a problem.

For this purpose, ibaLogic provides the feature of creating a new function block with the
help of structured text. The ST (Structured Text) code is visible to the user, who can
modify it.

One variant of the self-created function block is creating your own DLLs (using a DLL
framework provide by iba). The code is hidden with this option. The block created in
this manner is available as a standard function block.

Other Documentation

For further information, please refer to the documentation on creating DLLs on the
supplied CD "iba software and manuals".

 Manual ibaLogic-V4

34 Issue 4.2.4

4.6.2.2 Graphics Programming

The following elements are available to link the function blocks:

 Connection lines

 Intra-Page Connectors (IPC)

 Off-Task Connectors (OTC)

 Converter

 Splitter

 Joiner

You need to connect the function blocks with the help of connection lines for graphics
programming. You can use intra-page connectors for better program structuring.

An intra-page connector merely represents a drawing simplification. In the process, the
IPC replaces a connecting line. This is beneficial particularly when several objects on
one page need to be connected with the same point or "long" connections are required
across multiple pages.

Off-task connectors serve as program-independent connecting elements. These are
required whenever you need communication between several programs.

Off-task connectors are also used for communication between ibaLogic and OPC
Clients. This can be configured in the off-task connector.

Tip

For further information, also refer to "Graphical Connections, Page 154" and
"Converters, splitters, joiners, Page 161".

4.6.2.3 Comments

You can use comments to structure and simplify the program description. These can be
placed wherever desired or even "docked" to another element.

4.6.2.4 Data types available

ibaLogic supports all elementary and combined data types defined in the IEC 61131-3
standard (Exception: WSTRING).

ibaLogic-V4 Manual

Issue 4.2.4 35

4.6.2.5 Integrated measurement using ibaPDA Express

You can use the integrated ibaPDA Express tool for quick display of a signal waveform.

figure 5: Integrated measurement using ibaPDA Express

With the ALT key pressed, you can move the signals to the ibaPDA Express window
using Drag & Drop and display them there.

ibaPDA Express does not save any data for long-term recording.

4.6.2.6 Measured value storage

You can store measured values using the licensed (rights-managed) function block,
"DAT_FILE_WRITE". For more information, please refer to "DAT_FILE_WRITE (DFW
Function Block), Page 96".

Tip

You can display and evaluate the signal measurements in the *.dat files created with
the help of the user-friendly and comfortable analysis software, ibaAnalyzer.

 Manual ibaLogic-V4

36 Issue 4.2.4

4.7 Connectivity

The ibaLogic systems are capable of communicating with one another via the
interfaces available in the Windows PC or the PADU-S-IT (e. g. via TCP/IP, ibaNet
etc.).

The communication with external systems or discrete I/Os is illustrated in the
connectivity overview diagram.

figure 6: Connectivity to iba and external systems

ibaLogic-V4 Manual

Issue 4.2.4 37

5 ibaLogic Server

5.1 Functional overview of the ibaLogic Server

The ibaLogic Server is not only the central point of communication between
ibaLogic Client and the PMAC, but it is also responsible for the management of
the ibaLogic-V4 projects in the database. Similarly, in the background, it manages a
connection to an active PMAC for loading / starting / stopping actions of the PMAC.
This link is established via the ibaLogic Client.

Hence, the server can be divided in the following functions:

 Server operation

 Start / Stop / Close

 Database actions
Backup and restore
Resetting the entire current database

 Administrative settings

 Set the port number for client connections

 Set up connections to ibaLogic databases and their parameters

 Configure auto start for the server and the local PMAC

 Set up automatic backup of the current database

 Set the general server options

 Display status of / execute the database scripts (only for support purposes)

figure 7: Functional overview of the ibaLogic Server

Database

Runtime system "PMAC"

ibaLogic Server

File system

ibaLogic Client

Save/
Restore function

 Manual ibaLogic-V4

38 Issue 4.2.4

5.2 Start ibaLogic Server

Requirement

You have the ibaLogic Server shortcut on the desktop.

Procedure

1. Double click on the shortcut "ibaLogic Sever" on the desktop.
The "ibaLogic Server" dialog box is displayed.

When opening the ibaLogic Server, it goes automatically to the start status. The

following icons are displayed in the info section.

ibaLogic-V4 Manual

Issue 4.2.4 39

2. Click on the <Start> button to start the ibaLogic Server. You can also start the server
via the menu "Server - Start".
The start / stop status is displayed in the server dialog box by an icon, a message
and the active button.

 Manual ibaLogic-V4

40 Issue 4.2.4

5.3 User Interface – ibaLogic Server

The ibaLogic Server is used to:

 Configure the server

 Put it in the start / stop mode

 Configure and backup the database

figure 8: ibaLogic Server - User interface

1 Menu bar 4 Current database connection

2 Setting up the database connection 5 Status bar

3 Start button / Stop button

ibaLogic-V4 Manual

Issue 4.2.4 41

5.4 ibaLogic Server Setting

5.4.1 Configuring the Client port

The client port number serves as a link parameter for an ibaLogic Client.

Note

This setting should be changed only if a service that uses this port is being executed
on the server computer. The same port must be configured in the client for connecting
with this server. Enter the new port number also while selecting the link. Select the
menu „File - Connect with Server..." of the client.

The default value of the port is set to 8086.

Prerequisite

 You have stopped the ibaLogic Server.

Procedure

1. Select the menu "Server - Configure Port…".

2. Enter the port number of the client directly in the input field or set the port number
using the spinner.

 Manual ibaLogic-V4

42 Issue 4.2.4

5.4.2 Configuring the Database Connections

Important Note

If the server can no longer connect to the local database after changing the PC name,
please change the connection name from the old computer name to "localhost" under
"DataSource" . (See "Configuring the Database Interface, Page 43")

You can set up multiple database connections in ibaLogic. However, only one of them
is active at any given time. While installing ibaLogic, the database is created locally and
the default setting pertains to this.

Note

You need to perform the following actions only if you want to connect to a non-local
database and this was not already specified at the time of the installation.

5.4.2.1 Connect database

Procedure

1. Click on "Database Connections..." in the Database menu.

2. Choose an ibaLogic database connection in the "Move To" drop down box.
The default setting is the "Installed connection" database connection. This is the
connection to the local database.

ibaLogic-V4 Manual

Issue 4.2.4 43

3. Call up the configuration dialog box for database connections with the <…> browser
button. The browser button becomes visible only after clicking in the text field of the
"DataSource" line.

The following parameters

 InitialCatalog

 PacketSize

 IntegratedSecurity

 PersistSecurityInfo

 Encrypt

need to be changed only if you, e. g. wish to use a database that is already available
centrally for ibaLogic also.

However, you must have basic knowledge on databases for this purpose.
In case of doubt, please ask a database administrator to configure the settings.

 Manual ibaLogic-V4

44 Issue 4.2.4

5.4.2.2 Configuring the Database Interface

Enter the computer name and the instance of the ibaLogic database with which a
connection needs to be established under "DataSource".

Procedure

 Enter the name of the server directly into the text field or select the database using
the tree with the help of the browser button.
The browser button becomes visible only after clicking in the text field.

ibaLogic-V4 Manual

Issue 4.2.4 45

5.4.2.3 Select SQL server

The "Select SQL server"dialog box contains 2 tabs "Local servers" and "Network
servers".

figure 9: Local server instances

figure 10: Network server instances

All SQL database instances available on the computer are listed under "Local database
instances".

After pressing on the "Network servers" tab, the entire network available is searched for
SQL instances. This process may take some time. As long as the network is being
searched, a message "Information is being read" appears in the text field.

Procedure

1. Click on the SQL server instance to which the ibaLogic Server should connect.

2. Finally, click on <OK>. The SQL server instance is accepted. The dialog box is
closed.

Result

The SQL server instance is connected with the ibaLogic Server.

 Manual ibaLogic-V4

46 Issue 4.2.4

Remark

Other database connections may be installed or deleted.

The following icons are available for configuring the database connection:

Icons / Selection box Tooltipp Explanation

Add Add a new database connection

Remove Delete a database connection

Start To the first connection

Back To the previous connection

Next To the next connection

End To the last connection

 Choose object Option for selecting a connection

5.4.2.4 Manage Database scripts

Important Note

The list of installed database scripts is used to provide information for the iba support.
Please do not make any modifications.

All scripts implemented in ibaLogic along with the associated information such as the
version number, script name and the date of installation are displayed in tabular form
when you call up the function "Database scripts". The ibaLogic Server must be stopped
in order to call up the "Database scripts" dialog.

Generally, the database scripts are checked via version updates and automatically
installed after a previous check.

ibaLogic-V4 Manual

Issue 4.2.4 47

5.4.3 Options

5.4.3.1 Activate Autostart Server

The ibaLogic Server is automatically started on Windows startup.

You can choose where the autostart options are saved:

 In the registry

 In the autostart folder of the current user

 In the autostart folder for "All users"

The default setting is that the server also starts up when the ibaLogic Server dialog is
opened. If the server dialog should be open, but the server itself in STOP mode, the
option "Autostart server stopped" must be enabled. In this case, the server must be
started up manually so that the client connections are accepted.

Autostart options Explanation

Registry file (recommended) The option saves the autostart options in the registry file.

Start-up folder (User) The option saves the autostart options in the start-up
folder of a given user.

Start-up folder (All users) The option saves the autostart options in the start-up
folder for all users.

Autostart server stopped (not recommended) This option opens the ibaLogic Server dialog, but the
server itself is not started. The server remains in the stop
mode.

Procedure

1. Select the "Tools - Options" menu.

 Manual ibaLogic-V4

48 Issue 4.2.4

2. Choose "Server – Autostart Server" in the tree .

3. Click on the selection box "Enable Autostart Server".

4. Click on <Apply> to activate the settings.

Result

The ibaLogic Server is automatically started on Windows startup.

ibaLogic-V4 Manual

Issue 4.2.4 49

5.4.3.2 Configure General ibaLogic Server Options

The following general ibaLogic Server settings can be configured:

Server option Explanation

Display icon in the Info section The option, when enabled, displays an icon in the Info
section when the ibaLogic Server dialog is opened.

Display in the task bar when minimized The option, when enabled, makes the ibaLogic Server
dialog appear in the task bar when minimized.

Display files in the backup dialog screen Number of files that should be shown in the backup
dialog screen. This can be chosen in the "Backup folder"
selection box under "Server - Auto backup".

Display files in the restore dialog screen Number of files that should be shown in the restore
dialog screen.

Display folders in the backup settings screen Number of folders that should be shown in the backup
settings screen.

Procedure

1. Select the "Tools - Options" menu.

2. Select "Environment - General" in the tree.

3. Configure the settings as desired.

4. Click on <Apply> to activate the settings.

 Manual ibaLogic-V4

50 Issue 4.2.4

5.4.3.3 Settings for the Local PMAC

The local PMAC has been realized as a Windows service. Its status and start-up type
(Autostart options) are configured here.

Status setting:

 Activate

 Deactivate

Status option Description

Activate With activate, the service, if required, is reinstalled automatically.

Deactivate By selecting between "PMAC full version" and "PMAC demo version", it can be
switched between the two run time versions.
The full version requires a dongle, hardware access is not possible in the demo
version, several functions are also disabled (no function in TCPIP_SendRecv,
DatFileWrite, User-DLLs), even though they can be used in the project.

Configuring the autostart options (Start-up type):

Autostart option Explanation

Do not start PMAC automatically The option ensures that the PMAC service is not started
up automatically.

Start PMAC service before Windows user login This option starts the PMAC service before the Windows
user login.

Additional option:

Run prepared project on start if available

Start PMAC service with the ibaLogic Server This option starts the PMAC service along with the
ibaLogic Server.

Additional option:

Run prepared project on start if available

Run prepared project on start if available This option causes an image of a project to be loaded
and used on start-up. The image must be prepared in
advance via a menu command in the client. If no image
is available and this option was selected, it is ignored.

ibaLogic-V4 Manual

Issue 4.2.4 51

Description for switching the PMAC versions
(demo or full version)

Procedure

1. Stop the PMAC in the ibaLogic Server options dialog under "Environment - Local
PMAC" and then disable and uninstall it.

2. Now select the requested PMAC version (full version or demo), "Activate" the
service again (will be installed in doing so) and <Start PMAC> or, depending on the
selected autostart option, with the next server start.

3. Select an autostart option.
If the autostart service is enabled, you can choose from the autostart options
provided.
In addition, you can choose that the project should be started.
For this, it is necessary that this project has been "saved in PMAC" previously.

4. Click on <Apply> to activate the settings.

 Manual ibaLogic-V4

52 Issue 4.2.4

5.4.3.4 Language

Within this section, you configure the language of the server dialog.

The language of the client dialog has to be configured separately.

Procedure

1. Select the "Tools - Options" menu.

2. Select "Environment – Language" in the tree.

3. Select "Language options".

4. Choose the selection box with the desired language.

5. Click on <Apply> to activate the settings.

ibaLogic-V4 Manual

Issue 4.2.4 53

5.4.4 Status bar

There are 3 icons in the status bar in the ibaLogic Server dialog screen. The icons are
used to activate or deactivate the autostart and backup settings.

figure 11: Functions deactivated in the status bar

figure 12: Functions activated in the status bar

Icon Setting Description

Autostart
(Start before login)

Activation causes the PMAC to be started automatically
every time Windows starts up.

Autostart (Registry) Activation causes the autostart options to be saved in the
registry file.

Automatic backup Activation causes the database to be backed up in
accordance with the settings.

 Manual ibaLogic-V4

54 Issue 4.2.4

6 Programming Environment – ibaLogic Client

The ibaLogic Client is used to create and edit programs.

6.1 Start ibaLogic Client

The programming environment is displayed.

Prerequisite

 You have created the start icons for ibaLogic Client and ibaLogic Server on the
desktop (Standard installation).

 You have started ibaLogic Server.

Procedure

 Double click on the "ibaLogic Client" icon on the desktop.
The ibaLogic Client dialog screen opens after a brief initialization phase.

Remarks

The event window below the program window documents the program actions and
collisions, if any.

ibaLogic-V4 Manual

Issue 4.2.4 55

6.2 User Interface of Programming Environment – Editor

figure 13: User Interface

1 Menu bar 5 Programming field

2 Navigation area 6 Window for events

3 Toolbar 7 Navigation buttons

4 Program designer

6.2.1 Menu Bar

The menu bar is the central control element of the ibaLogic Client.

figure 14: Menu Bar

6.2.2 Toolbar

The toolbar is the secondary control element of the ibaLogic Client.

figure 15: Toolbar

The icons of the toolbar are also buttons at the same time.

 Manual ibaLogic-V4

56 Issue 4.2.4

6.2.3 Navigation Area

The navigation area contains buttons for:

 Workspace Explorer

 Inputs – Outputs

 Function Units

 Data Types

 Instances

 Definitions

 Hierarchy

 Evaluation Order

figure 16: Navigation buttons

ibaLogic-V4 Manual

Issue 4.2.4 57

6.2.3.1 Switch Views in Workspace Explorer

There are 3 buttons in the menu bar of the workspace explorer to switch the view of the
workspace explorer. In each of the 3 views, the entries can be sorted alphabetically or
according to their priority.

IEC View

This view is the default view and shows the structure of the ibaLogic working range
according to standard IEC 61131-3.

figure 17: IEC View

Note

In contrast to the IEC61131-3 standard, only one program is assigned to each task.

Prog View

Compact display of projects and programs.

figure 18: Prog View

Task View

Presentation is arranged according to tasks

figure 19: Task View

 Manual ibaLogic-V4

58 Issue 4.2.4

In the process, you can choose between sorting the display in alphabetical order or by
priority.

Symbol Explanation

Sorts the entries according to names.

Sorts the entries according to their priority.

6.2.3.2 Instances

All blocks used in the project are listed by instance names in the instances view. The
definition name is also displayed, separated by a colon.

Double clicking on the instance name displays the program page in which the block is
placed. The block is marked in the process.

Note on difference between Definition – Instance

The definition of a block is saved in the global library. The program always contains an
instance (virtually, a copy) of the block. The instance name is automatically formed
from the "Definition nameIndex". However, you have the possibility to change the
name afterwards.

When you modify the contents of a block, you also modify the definition and the other
instances.

figure 20: Instances

1 Instance name 3

2 Definition type

Task containing this block

ibaLogic-V4 Manual

Issue 4.2.4 59

If a block is placed in a nested macro, it is displayed with a tree structure:

figure 21: Instance view as a tree structure

6.2.3.3 Definitions

All blocks present in the project are displayed in this view arranged in the order of their
definition names. The tree structure contains instances located below the block type,
and below these, macros, if any, and finally the task with the program names.

Double clicking on the instance names displays the program page in which the block is
placed. The block is marked in the process.

figure 22: Definitions

1 Definition name 3 Task name

 Manual ibaLogic-V4

60 Issue 4.2.4

2 Instance name

6.2.3.4 Hierarchy

All instances of the blocks arranged alphabetically by tasks are displayed within the
hierarchy view.

figure 23: Hierarchy view

1 Task 2 Instance name

6.2.3.5 Evaluation Order

The "Evaluation Order" view shows the sequence in which the programs and blocks
are evaluated within the programs.

The blocks evaluated first are displayed at the top.

Example

2 tasks with identical interval time but different priority

figure 24: 2 tasks with identical interval time but different priority

ibaLogic-V4 Manual

Issue 4.2.4 61

figure 25: NewProgram with the following contents

The evaluation order is displayed as follows:

figure 26: Evaluation Order

Rules for the Evaluation Order

 The programs are executed according to the interval of the tasks assigned to them.

 Tasks that are to be started simultaneously are evaluated according to their priority,
whereby 0 is the highest priority.

 Tasks are not interrupted. This means that even a higher priority task does not
interrupt one with a lower priority that is running currently.

 The evaluation within a program takes place in accordance with the following rules:

 Based on the data flow, those blocks generating the data are always evaluated
first. Thereafter, those are evaluated that use the data.

 If there are multiple independent branches in a program, the supplementary rule
applicable is that evaluation takes place from the top left to the bottom right.
This means that a branch located above is evaluated first.

 In a feedback loop within a program or macro, the block placed at the uppermost
left position is evaluated first.

 Manual ibaLogic-V4

62 Issue 4.2.4

Danger due to modifications in the Evaluation Order!

This has the consequence that (only in feedback loops) by shifting the blocks, the
evaluation order and, thus, the results may change.

Tip

In order to prevent this, it is recommended to encapsulate blocks in a macro and to
implement the feedback outside the macro. In this manner, the evaluation order is
defined uniquely independent of the positioning.

The macro block is a block. Within the macro the blocks are evaluated in accordance
with the rules given above. In other words, the output evaluated is considered as a
new input value only in the next clock cycle.

Tip

The content of a function block is evaluated in one cycle.
This means, for example, that when you access an input connector within a For loop,
you get the same value in each execution of the loop, since the connector is re-
evaluated only in the next cycle. If you wish to have a loop across multiple cycles, you
must obtain the feedback from the control variable external to the block.

6.2.4 Program Designer

Function blocks are placed and linked with one another in the program designer.

figure 27: User interface of the program designer

1 <Back> button 5 <Release / Block> button

2 Evaluation context 6 Output area

3 Tab 7 Input area

4 Programming window

ibaLogic-V4 Manual

Issue 4.2.4 63

6.2.5 Arrangement of the Tabs and Programming Windows

You can define the arrangement using the mouse.

The following options are available:

 Overlapping

 Horizontally or vertically

6.2.5.1 Arrange tabs

Proceed as follows to arrange the tabs:

Procedure

1. Click on the tab of the program concerned.

2. Keep the mouse button pressed, and move the tab to the new position.

figure 28: Arrangement in the form of register tabs

6.2.5.2 Arrange programming windows

Dockable windows are movable windows that can be shifted to any position on the
screen and can be coupled to the docking marks.

Proceed as follows to arrange the windows:

Procedure

1. Move the mouse pointer to the tab of the window that you wish to shift.

2. Press the left mouse button and keep it pressed.

3. Move the window to the docking mark at which you wish to position the tab.

 Manual ibaLogic-V4

64 Issue 4.2.4

4. Release the mouse button. The window is now anchored at this position.

Note

Program windows cannot be positioned as desired.

The programs and macros that are opened are displayed graphically in the
programming field. Since macro blocks are displayed exactly in the same way as
programs, they are not described in the following sections.

Toolbar

You can use the following functions in the toolbar:

 Back ()

 Evaluation context (only with macros)

 Evaluation time (only in the online mode)

Back

You can use this button to navigate in the program window. The last selected program /
macro is displayed.

Evaluation context (only with macros)

It is used to display the program or macro level in which the current plan is located.
Since the instances of a macro block can occur several times in one or in various
programs with different call parameters, you can see the program and instance in
which the macro currently open is located.

If one macro is located in another macro (nesting), the entire hierarchy branch is
displayed separated by dots:

Display: Program_name.Macro_1.Macro_2...

ibaLogic-V4 Manual

Issue 4.2.4 65

You can select the context within an open macro, i. e. you can switch from one instance
to another. The values seen in the online view are always related to the instance
selected.

1. To do this, click on the arrow button on the right side beside the macro instance
name.

2. You can select the calling level from within the macro when you click the instance
name in the evaluation context directly.

The area of the program field window that contains this macro instance is displayed
and the macro block is marked.

Evaluation time (online mode only)

It is displayed in each program as a percentage value with respect to the task interval
and as an absolute value in ms (smoothed mean value).

6.2.5.3 Navigating in the Program Designer

You have several options to navigate in a program:

 Zoom

 Program overview

 Hot keys

Zoom

You have the option to enlarge (zoom in) or reduce (zoom out) the size of the
programming field in the program designer.

The following possibilities for zooming out or zooming in are available:

 Use of the buttons <Zoom in> / <Zoom out>

 Use of the picklist

 Use of the hot keys

 Manual ibaLogic-V4

66 Issue 4.2.4

Buttons

 Press the button. or in the ibaLogic Client toolbar, to zoom in
or zoom out by 20 % at each click the view in the programming field of the program.

Pick list

 Select between the 5 preset zoom-values in the pick list

or

 Enter a zoom factor using the keyboard from 25 to 200 percent in the drop down
box (pick-list).

Key combination

 Press <Ctrl> and roll simultaneously the scroll wheel of the mouse.

The minimum zoom factor depends on the screen resolution.

Program overview

Since one program page generally exceeds one screen page and only a partial window
of the program can be seen depending on the zoom factor, the program overview
serves as an orientation aid.

Open and use program overview

Procedure

1. Select "View - Program Overview" in the main menu.

A miniature view of the "Program Overview" window is opened in the foreground of
the current program window.

The visible section is displayed as a transparent rectangle.

2. Move the rectangle by using the mouse until you see the desired program area in
the program designer.

ibaLogic-V4 Manual

Issue 4.2.4 67

Annotation

The overview window can be placed arbitrarily.

It can also be docked outside the programming field or at its margin.

figure 29: Programming field with displayed program overview window

Navigate in the programming field

The navigation in the program window is generally done with the mouse.

In the following, the mouse functions are explained in summary:

 Scroll wheel: Scrolling of the visible area to the top/bottom

 Scroll wheel + <Shift>: Scrolling of the visible area to the left/right

 Scroll wheel + <Ctrl>: Zoom out/zoom in

Enlarge page to the bottom

The program page has a default width of 2500 pixel and a default height of 10000 pixel.
The visible cutaway depends on the screen resolution.

If the page size is not sufficient, enlarge the page to the bottom.

Processing

1. Open the context menu by clicking with the right mouse button on a free area in the
programming field.

2. Select "Extend page (vertical)" in the context menu.

Result

From the current mouse cursor position, a range of 800 pixel lines is added.

 Manual ibaLogic-V4

68 Issue 4.2.4

Annotation

Important note

Please ensure that there are no blocks in the horizontal line of the mouse pointer.
Connecting lines that cross this intended horizontal line are extended.

Note

You cannot remove an empty page within the task using any function. An empty area
at the lower end of the task is removed automatically when loading a project.

Tip

An empty space within the tasks can be achieved by reducing the zoom-level and
shifting the objects jointly.

6.2.6 Synchronize Access (<Read write>/<Read only> buttons)

During the multi-client operation the access to windows and dialogs can be
synchronized by the buttons <Read write>/<Read only>.

figure 30: <Read write> button

figure 31: <Read only> button

6.2.7 Events Window

The "Events" window below the "Program Designer" window documents the program
actions and collisions, if any.

The events window is divided into 4 views with the help of tabs.

You can choose from the following views:

 Local events

 Server events

 All events

 Console view

Event icons are used in the "Local Events", "Server Events" and "All Events" views.

Event icon Event Level Description

Info Info Displays information

Warning Warning Displays a warning

Error Exception Displays an error

ibaLogic-V4 Manual

Issue 4.2.4 69

6.2.7.1 Local Events

You can use the "Local Events" view to display events of the client in a formatted
manner.

figure 32: Events window – "Local Events"

6.2.7.2 Server Events

The "Server Events" view is used to display events pertaining to the server.

figure 33: Events window – "Server Events"

6.2.7.3 All Events

You can use the "All Events" view to display events of the client and the server in a
formatted manner.

figure 34: Events window – "All Events"

6.2.7.4 Console View

The "Console View" is used to display all events as simple text sorted chronologically
according to their occurrence with the corresponding explanation.

figure 35: Events window – "Console View"

 Manual ibaLogic-V4

70 Issue 4.2.4

6.3 Workspace

You can use a workspace to save programs and projects in a sorted manner.

6.3.1 Create Workspace

Prerequisite

You have not opened any workspace.
You can close any workspaces that are open via "Close workspace - file".

Procedure

1. Click on the arrow of the <New> icon in the toolbar.

2. Select the "New Workspace" menu entry from the list.

The "Add Workspace" dialog box is displayed.

3. Assign a name and a description for the program.
ibaLogic creates a new project and a task automatically. Assign meaningful names
and descriptions that also conform to the IEC standard.
If required, define also the interval time and its priority for the task.

ibaLogic-V4 Manual

Issue 4.2.4 71

Remark

You can modify all settings later on.

You can modify the settings via the respective context menu for
"Properties".

A name that has already been assigned is displayed with an "X" at the end of the input
field.

You can fill the fields for the description with any comments as you please. These
comments are displayed above the object as a tooltip.

Notes

The names must comply with the IEC standard. For further information refer
to "Naming conventions, Page 277".

Tip

You can set the default value for the names under
"Tools – Options – Editors – Workspaces".

6.3.2 Open workspace

Procedure

1. Press the <Open> button. The "Open Workspace" window is displayed.

2. Select the desired workspace and click <OK>.

6.3.3 Close Opened Workspace

Select the workspace in the "File – Close Workspace" menu.

 Manual ibaLogic-V4

72 Issue 4.2.4

6.3.4 Remove Workspace from the Database

Procedure

1. Click on the <Open> button. The "Open Workspace" window is displayed.

2. Mark the workspace that needs to be removed.

3. Open the "Remove Workspace" context menu by clicking on the right mouse
button.

4. Click on "Remove Workspace". The "Remove Workspace" dialog box is displayed.

5. Confirm with <Yes>.

6. Confirm the procedure with <OK>. The dialog box is closed.

ibaLogic-V4 Manual

Issue 4.2.4 73

6.4 Workspace Projects

ibaLogic automatically creates a project while creating a new workspace. You can
create more than one project within one workspace.

Prerequisite

 You have started the ibaLogic Server and the ibaLogic Client.

 You have created at least one workspace.

6.4.1 Create Project

Procedure

1. Click with the right mouse button on the workspace name to which the project
needs to be added in the Workspace Explorer.

2. Select "Add - New Project" in the context menu.

The "Add Project" dialog box is displayed.
The dialog box that opens is the project-specific section from the workspace dialog.

Assign a name to the project and the program. Assign meaningful names that
conform to the IEC standard. If required, set up the interval time and priority for the
task.

 Manual ibaLogic-V4

74 Issue 4.2.4

6.4.2 Set Project as Active

Note

Only one project of many can be active within a workspace.

Procedure

1. Open the context menu of the project to be activated by clicking on the right mouse
button.

2. Select "Set As Active Project".

Result

The name of the active project is displayed in the Workspace Explorer in "Bold" and
the associated icon changes its color from blue to pink.

Notes

If any project is in the online mode (programming field background is pink), no other
project can be set as active.

By setting a project as active, the programs of the project are not loaded automatically
in the design area, but need to be selected manually as required.

The buttons in the toolbar and in the Workspace Explorer are only valid for the active
project. These are:

 <Start>

 <Stop>

 <Disconnect>

 <Current target system>

 <I/O configurator>

ibaLogic-V4 Manual

Issue 4.2.4 75

6.4.3 Load Project in the Program Designer

Regardless of whether a project is active or not, you can load programs in the design
area.

Procedure

1. Mark the project that you would like to load in the designer.

2. Select "Load in Designer" in the context menu.

Result

The programs loaded are displayed as tabs at the upper border of the design area.

6.4.4 Edit Project Properties

You can modify the name and description field in the project properties. You can enter
supplementary information about the project in the "Description" text field.

Procedure

1. Click with the right mouse button on the project whose project properties you would
like to edit.

2. Select "Properties" from the context menu.
The "Edit" window is displayed.

3. Edit the properties of the project.

4. Click on <OK>.

6.4.5 Remove Project

The project selected is removed from the workspace and from the database at the
same time.

Procedure

1. Click with the right mouse button on the project that you would like to remove from
the workspace.

2. Select "Remove" in the context menu. The "Remove Project" dialog box is
displayed.

3. If you are sure that you would like to remove this project from the workspace, click
on <OK>.

4. If the project has been deleted, the "Project removed" dialog is displayed for
confirmation.

5. Finally, click on <OK>.

 Manual ibaLogic-V4

76 Issue 4.2.4

6.5 Tasks/Programs

ibaLogic creates a program automatically while creating a new project. You can add
other programs to a given project.

Notes

Please keep in mind that you cannot delete the last task. One task must always be
present for each project.

6.5.1 Create Tasks / Programs

Procedure

1. Click with the right mouse button on the project in which you would like to create a
new program.

2. Select the "Add - New Program" from the context menu.

The dialog "Add Program" is displayed.

3. Assign a name and a description for the program. An associated task is created at
the same time. Assign meaningful names that comply with the IEC standard.
Further information see definition in "Naming conventions, Page 277".

4. Click on <OK> to add the new program.

ibaLogic-V4 Manual

Issue 4.2.4 77

Exactly one task is assigned to each program. You can choose from the following task
parameters:

 Interval time

 Priority

Interval

The program belonging to the task is restarted exactly after the specified interval time.

If, under extreme circumstances, the evaluation time (or the evaluation of all programs)
is greater than the specified interval time, the system is overloaded. How to proceed is
explained in "Time behavior, Page 230".

The default value is 50 ms. The smallest interval possible is 1 ms, but the time interval
cannot be less than the timebase set in the I/O configurator.

Notes

You can change the default values for the program name and the time interval under
"Tools – Options – Editors – Workspace".

Priority

Each task is assigned a priority. "0" means highest priority.

Please note that no task can be interrupted by another having a higher priority. The
priority is relevant only for the order of evaluation. For more information, please see
 "Time behavior, Page 230".

Notes

You can display the tasks either in alphabetic order or in the order of their priorities in
the workspace.You can use the icons at the upper border of the navigation section for
this purpose

 .

6.5.2 Open Tasks/Program

Double click on the program name in the Workspace Explorer.

6.5.3 Change Task / Program Properties

Change the properties of existing tasks / programs.

Procedure

1. Click with the right mouse button on the corresponding task or program.

2. Select "Properties" in the context menu. The "Edit" window is displayed.

3. Change the properties.

4. Finally, click on <OK>.

 Manual ibaLogic-V4

78 Issue 4.2.4

6.5.4 Remove Task / Program

Remove a program / task from a workspace.

Procedure

1. Click with the right mouse button on the corresponding task or program.

2. Select "Remove" in the context menu. The "Confirm" dialog box is displayed.

3. If you wish to remove the program, click on >Yes>.

Notes

Please keep in mind that you cannot delete the last task. One task must always be
present for each project.

6.5.5 Import / Export Programs

To exchange complete programs between projects of different data bases exist
export/import functions.

Export procedure

1. Click with the right mouse button on the correspondent program.

2. Select "Export to ST" in the context menu. The "Export" dialog box is displayed.

3. Call up the file browser, select a directory, enter the filename and click on
“Save”.

4. Enable the option “With additional graphical information...” and click on OK.

Import procedure

1. Switch off the calculation because the import is only available in the offline mode.

2. Select "File–Import–Structured Text" under main menu.
The “Structured text import” dialog is displayed.

3. Call up the file browser and select directory and file (with file extension *.il4) and
press “Open".

4. Select the option “Import definition of Function blocks as new” and click on OK.

ibaLogic-V4 Manual

Issue 4.2.4 79

During the import, the names of the function blocks and data types to be imported are
compared to already existing names. If names are already assigned, the definitions are
overwritten (TRUE) in relation to the option: “Import definition of function blocks as
new” or a new definition is created with name+index (FALSE).

The imported program is newly created together with the task. If the program name is
already assigned, they are created with name+index.

During the import of a project, all programs and tasks in the project are newly assigned,
probably with “name+index”.

Note

For export/import description for blocks refer to "Exporting Blocks, Page 93" or
"Importing Blocks, Page 94".

 Manual ibaLogic-V4

80 Issue 4.2.4

6.6 Configure Inputs and Outputs

Inputs and outputs are are routed signals to peripheral devices.

You work with "virtual" signals in the programming environment. You must assign these
using an allocation process to hardware signals that are actually present.

You can do this assignment from the viewpoint of the program or that of the hardware,
for each signal separately or for groups of signals.

Important note

For more information, please refer to "IO Configuration, Page 175".

The inputs and outputs of the hardware are arranged in a tree structure within the
navigation section of the I/O configurator.

The hierarchy levels are:

Direction  group  signal subdivision  signals

 Direction:
"Inputs" or "Outputs"

 Group:
group name either created manually or taken over from the module name of the
signal assignment.

 Signal subdivision:
The signals are divided in analog and digital signals.

 Signals:

 signal name either created manually or taken over from the name of the signal
assignment.

 behind that the data type in brackets,

 then the hardware signal name to the right of the arrow (->)

ibaLogic-V4 Manual

Issue 4.2.4 81

figure 36: Inputs - Outputs

6.6.1 Create Signals

Signals are assigned to groups. This facilitates meaningful structuring.

6.6.1.1 Define Group

Procedure

1. Click with the right mouse button on "Inputs - Outputs" and select the menu item
"Add group".

2. You determine the name for the new group in the dialog “Setup group name”.

 Manual ibaLogic-V4

82 Issue 4.2.4

Result

The new group is created under “Inputs" as well as "Outputs".
Groups which are not necessary can be deleted by means of the context menu and/or
the DELETE key.

Example

Groups: Motor A, Motor B

Input signals: Actual speed, motor temperature

Output signals: Set-point value, parameter

figure 37: View "Inputs – Outputs"

6.6.2 Define Signals

Procedure

1. Click with the right mouse button on an input or output group.

2. Select "Add input" or "Add output" in the context menu.
The "Edit inputs and outputs" dialog will be opened.

ibaLogic-V4 Manual

Issue 4.2.4 83

3. Assign a signal name, data type and, a description, if any. Assign meaningful
names that conform to the IEC standard.

Please note that for the data type, this is provided by the peripheral device. If the
analog value from an ibaPADU-8 is used, for example, it is always an integer value.

 Manual ibaLogic-V4

84 Issue 4.2.4

In our example, the following scenario would emerge:

The signals have not yet been assigned to any hardware.

6.6.3 Edit Existing Signals

Procedure

1. Double click on a signal that has been defined.
The editing dialog box opens.

2. Assign a signal name, data type and, a description, if any. Assign meaningful
names that conform to the IEC standard.

3. Click on <OK> to accept the modifications.

6.6.4 Remove Signals

Procedure

1. Click with the right mouse button on a signal that has been defined.
The context menu opens.

ibaLogic-V4 Manual

Issue 4.2.4 85

2. Select "Remove Signal" in the context menu.

Note

You can edit and remove inputs and/or outputs only if you do not yet use them in the
program, i. e. they are not yet visible in the input and/or output bar.

Note

The assignment of the signals defined here to the hardware available is described in
the "Signal assignment, Page 182" section.

Important Note

The interface cards of third party manufacturers sometimes do not provide individual
signals with the elementary data types, REAL and INT. A data structure as an input /
output is generated here for the Profibus master card SST, and it depends on the
configuration of the slave (GSD file). You must also define this structure in ibaLogic to
be able to use the signals included there.

An example of the connection of the Profibus master card is documented and included
in the CD supplied.

 Manual ibaLogic-V4

86 Issue 4.2.4

6.6.5 Export / Import Signals

The virtual signal names are often already provided in external documents. Use the
export and import functions in order to use them.

Exporting the entire I/O configuration

Procedure

1. Open the context menu of a group or of a signal and select the menu option
"Exporting configuration".

2. Open the export, for example, in a spreadsheet program.

3. Enter the virtual group designation and signal name in the group and icon columns
or modify the existing names.

ibaLogic-V4 Manual

Issue 4.2.4 87

4. Import the signal assignment by using the menu item "File-Import-Signal
assignment".

The "Importing signal assignment" is displayed.

5. Specify the file name with the target path.

6. Click on <OK> to start the import.

 Manual ibaLogic-V4

88 Issue 4.2.4

6.6.6 Using Signals in the Program

To be able to use signals in a project program these must be dragged to the input or
output sidebar.

Processing

 Drag the desired individual signal or the entire group to the sidebar of the input or
output.

Example

The signal "MotorA_N_Ist" has been dragged to the input sidebar.
When you point with the mouse on the connector symbol of the signal, a tooltip is
displayed with information pertaining to this signal.

If you drag an entire group to the sidebar, all individual signals are placed there. If
certain signals of the group are already placed in the sidebar, the following warning
message is output.

Note

For further information please see "IO Configuration, Page 175".

ibaLogic-V4 Manual

Issue 4.2.4 89

6.6.7 Remove Signals in the Program

Procedure

1. Mark the signal in the input or output bar.

2. Press the function key.

Remarks

You can make multiple selections by clicking the left mouse button and pressing the
<Shift> key simultaneously or by dragging a rectangle using the left mouse button
(Lasso) over the signals concerned. Please note that the rectangle must completely
enclose the signals.

 Manual ibaLogic-V4

90 Issue 4.2.4

7 Program Creation

7.1 Blocks

In ibaLogic, a large number of function blocks are provided in a global library.

In addition to the function blocks defined in accordance with the IEC 61131-3 standard,
iba also provides its own function blocks and user blocks. These are listed in the
navigation area of the "Function Blocks" view.

Each function block contains an icon.
The icons have the following meaning:

 Blocks of the IEC 61131-3

 iba blocks

 Functions that are available in the form of a DLL

 Function blocks and macro blocks created by the user

The function blocks are listed in groups and sub-groups that are sorted alphabetically
according to the IEC 61131-3 specification.

figure 38: Function Blocks "Global Library" figure 39: Function Blocks "Arithmetic"

The "Global Library" also contains the folders „CUSTOM" and
"NEW PROJECT".

ibaLogic-V4 Manual

Issue 4.2.4 91

CUSTOM

There, all global user blocks and functions being available as DLL are placed.

SPECIALS

The "Specialties" of ibaLogic are stored here. For more information, please refer
to "Specials, Page 301".

7.1.1 Using Blocks

You can use all blocks from the global library and the project library in a given project.

If you wish to use a FB from the global library, you can use Drag & Drop to move it into
the programming window.

You have no access to blocks that you have defined in a project of another workspace.

Important Note

When you modify the contents of a block, all instances and the definition of the block
are modified.

If you would like to modify the form, i. e. inputs and outputs or internal variables, you
will be asked to specify another name for the definition. In this case, a new block type
is created, the old definition and its instances remain unchanged.
However, this is only the case if more than one instance is available.

Procedure

1. Select a block that you wish to place in the programming field.

2. Drag & Drop the block selected in the "Function Block Overview" at any position
that is free in the programming field.

 Manual ibaLogic-V4

92 Issue 4.2.4

7.1.2 Create User Blocks

You can create a block in different ways:

 In the program

 Under the project

 In the global library

7.1.2.1 In the Program

Creating an FB or MB within a program.

Procedure

1. Click with the right mouse button at any free location in the programming window.

2. In the context menu, select "New... - New Function Block" or "New... -
New Macro Block". The "Create Function Block" window is displayed.

3. Create your block.

4. By pressing <OK>, the block is created if there are no syntax errors.

7.1.2.2 Under the project

Creating an FB within a project.

Procedure

1. Open the "Function Blocks" view.

2. Switch to the project folder.

3. Click in the function tree with the right mouse button on the desired project.

4. In the context menu, select
"New... - New Function Block" or "New... - New Macro Block".
The "Create Function Block" window is displayed.

5. Create your block.

6. By pressing <OK>, the block is created if there are no syntax errors.

7.1.2.3 In the Global Library

Creating a FB within the global library.

Procedure

1. Click with the right mouse button in the global library on the "CUSTOM" group.

2. In the context menu, select "New... - New Function Block" or "New... - New Macro
Block". The "Create Function Block" window is displayed.

3. Create your block.

4. By pressing <OK>, the block is created if there are no syntax errors.

ibaLogic-V4 Manual

Issue 4.2.4 93

Note
Difference between Definition - Instance

For more information, please see "Instances, Page 58".

7.1.3 Managing Blocks

Copy to the global library

If you would like to use a block, which you have defined in a program or project, even
in other workspaces, you must copy it to the global library.

Procedure

1. Click with the right mouse button on the FB that you would like to copy.

2. Select "Copy to the global library" in the context menu.
The block is copied into the "CUSTOM" group.

Note

A block that has been copied into the global library has the properties of the time point
when it was copied. If the FB in the project path is modified, these two blocks are
different.

Note

You cannot copy or move FBs from the global library to a project catalog. When using
a block from the global library, it is automatically copied into the project catalog.

You can also use blocks that have been defined in another project of the same
workspace. As a result, these are created automatically under the project blocks.

For more information, please refer to "Using Blocks, Page 91".

7.1.4 Exporting Blocks

If you would like to use a block, which you have defined in a database under the global
group "CUSTOM" or in a project, also in another database or another program tool,
then you can export this into a text file.

Procedure

1. Click with the right mouse button on the block definition under "CUSTOM" or under
the project.

 Manual ibaLogic-V4

94 Issue 4.2.4

2. Select "Export to ST" in the context menu. The "Export" dialog box is displayed.

3. Specify the target folder and file name.

Note

If you wish to use the block exported in an ibaLogic-V4 environment, you must export
the block with additional graphical information.

If you would like to use the block in another system, you should export it without
additional graphical information.

Important Note

Since the implementation of the IEC standard is manufacturer-dependent, before you
link the block, you must check in the external system whether it contains deviations or
non-conformances with respect to the IEC standard.

7.1.5 Importing Blocks

Prerequisite

 ibaLogic is not running in the online mode.

 You have a file (Block) that can be imported.

Procedure

1. Select the "File – Import – Structured Text" menu.
The "Structured text import" window is displayed.

2. Select the file to be imported in the browser.

3. Finally, confirm with <OK>.

Check box Explanation

Import definition of Organization unit
as new

The selection imports the organization unit as a new block.

ibaLogic-V4 Manual

Issue 4.2.4 95

7.1.6 Removing Blocks

When you remove a FB from the program, you are deleting only one instance of it.

Procedure

1. Select a FB from the library of your project.

2. Open the context menu.

3. Select <Remove>.

Remark

A dialog box is displayed if you delete the only instance that exists. You can specify in
this dialog box whether you would also like to delete the definition. Finally, confirm with
<OK>. The definition is deleted.

The function or macro block is also removed from the project and is thus no longer
available.

A global block definition in the "CUSTOM" group is not deleted by this method. You can
do this by clicking with the right mouse button on the block in the "CUSTOM" group in
the context menu "Remove" or by pressing the key.

 Manual ibaLogic-V4

96 Issue 4.2.4

7.2 Standard Blocks

The Appendix contains a tabular overview of all functions and function blocks that are
available in ibaLogic.

7.3 Complex Function Blocks

7.3.1 DAT_FILE_WRITE (DFW Function Block)

The function with which you can save existing analog and digital signals at run time in
.dat files is integrated in ibaLogic.
The .dat files have the iba data format and hence, they can be opened, analyzed and
processed further with the iba tools, ibaDatCoordinator and ibaAnalyzer (e. g.
extraction into a database).

figure 40: DAT_FILE_WRITE Block

You can save either individual values or arrays of buffered data. Data of type
INTEGER, REAL and BOOL is permitted. Saving additional information, such as
technostring, is supported. Further information, please refer to „Buffered Mode, Page
192".

Note

Writing to .dat files requires a license. Without a valid dongle,
FILE_IS_SIGNED remains "FALSE" for recording data and hence, the files generated
cannot be evaluated using ibaAnalyzer.

Note

An example of the configuration is given in the Appendix.

7.3.1.1 Function Block Edit DFW

After you have dragged the DFW block and dropped it in the program window, you can
open it by double clicking on it.

The window is divided in the following tabs:

 "Arguments"

 "Graphical"

ibaLogic-V4 Manual

Issue 4.2.4 97

The "Graphical" tab contains the sub-tabs:

 "General Configuration"

 "Signal Configuration"

figure 41: DAT_FILE_WRITE configurator

"Arguments" tab

The "Arguments" tab displays all inputs, outputs and the associated variables and data
types in a tabular view. This view is also used as an overview and to display the current
values in the online mode. Do not configure any settings in this view, but switch to the
"Graphical" tab. Your attention shall be drawn to any exceptions for individual
properties.

Important Note

When you link an input connector, the default values and those configured in the
function block are overwritten. After terminating the connection, the last value is
retained.

 Manual ibaLogic-V4

98 Issue 4.2.4

7.3.1.2 "General Configuration" Sub-tab

figure 42: "General Configuration" sub-tab

 Asynchronous access

Disabled:
The data to be saved is buffered internally. Data is written to the hard disk when the
buffer is full. If the file recording is complete, you can analyze the .dat file subsequently
(using ibaAnalyzer).

Enabled:
The internal buffer is written cyclically to the hard disk after the storage cycle time
configured. Hence, you can begin with the analysis while data is still being recorded.
The smaller the value of the storage cycle, the earlier is data available in the
ibaAnalyzer (if you have configured "automatic reload" there). The consequence is
lower degree of compression and higher load on the computer or a network.

 Start time offset

This time shifts the time axis backwards in time in the .dat files. The time axis in the
.dat file is formed by the starting time point and the sampling time, i. e. by the number
of samples and the time between the individual samples. Thus, the start time in the .dat
file is the "normal start time" – start time offset.

A pre-trigger can be generated in connection with the delay in the data to be saved
(using the DELAY block).

 Recording starts when the trigger is activated. In order to cancel the delay in the
recording, the start time offset must be set to the time delay.

 Write file (store_file)

ibaLogic-V4 Manual

Issue 4.2.4 99

Tip

Do not activate this field in this tab, but do it externally via the STORE_FILE
connector.

Rising edge: The .dat file with the name and path configured in the settings is
created. Recording commences only when STORE_VALUES = TRUE.

Falling edge: The .dat file is closed.

 Save values (store_values)

When this value is "TRUE" and the file is open, one .dat sample is stored in each
evaluation cycle.

The handling of this parameter depends on the mode of the data:

For values that are not buffered, activate this field and leave the STORE_VALUES
connector unconnected. You can use STORE_FILE to control the recording.

Note

If you control recording of the unbuffered data using STORE_VALUES, you get an
incorrect time axis. Since this is controlled in ibaAnalyzer by the number and time of
the samples, switching STORE_VALUES on and off dynamically does not lead to any
gaps on the time axis, but instead, the samples are arranged serially and gaps occur
at the end of the .dat file.

This variable must be handled differently for buffered values. For more information,
please refer to "Sub-tab "Signal configuration“, Page 102".

 Post-processing (pp_enab/pp_command)

Post-processing compatible with ibaLogic V3 is available.
iba recommends using ibaDatCoordinator to realize post-processing. It provides
comprehensive functions for further processing, e. g. copying files to a file server,
transfer to the ibaAnalyzer for extraction to a database etc.

 Sign file (sign_file)

The file gets signed when you select "Sign File" in order to be able to use extended
functions in the ibaAnalyzer. Leave this option permanently set. The associated output
is also set as soon the output file gets generated. This is FALSE if the appropriate
dongle is not found.

 Add technostring data (techno_string)

A technostring contains data associated with a measurement, e. g. batch number,
material designations, etc. These can be evaluated specially in the ibaAnalyzer.

The technostring is saved when the file is closed.

 If you would like to use the technostring, link the connector
TECHNO_STRING with a variable of type string e. g. the data received by a TCP/IP
module.

 Manual ibaLogic-V4

100 Issue 4.2.4

 File information (file_info)

This is extra ASCII information that is saved when the file is closed. This information is
available under "Info" when you conduct an analysis.
iba recommends that you use the FILE_INFO input connector in order to be able to
modify the contents dynamically.

The info fields in the analyzer are structured as follows:

Field name: Text

If no ":" is found in the text, ibaLogic sets "UserField0" as the default value.
Multiple info fields are separated by ";".

Note

Standard info field names cannot be overwritten. Entries with this name are ignored.

Standard info field names:

figure 43: Standard info field names

 Folder (Part of file_name):

 Select the drive and path by clicking on the browser button < > the drive and
path where the .dat files should be saved.

Important Note

You cannot work with the Windows file browser if the Runtime system is located on the
PADU-S-IT platform. Specify the path and file name in the preset to the FILE_NAME
connector in the "Arguments" tab or link the connector with a string variable in which
you can set the path and file name dynamically. The input gets accepted when the file
(STORE_FILE) is opened.

The default "C:\dat" should be used as directory. The data can then be fetched with
the ibaDatCoordinator. In the ibaDatCoordinator, it can then be accessed with "\\S-IT-
16-000074\RamDisk\dat", for example. Here, "S-IT-16-000074" is either the host name
or the IP address of the PADU-S-IT addressed, "RamDisk" is the internal release
name and "dat" the specified directory name.

ibaLogic-V4 Manual

Issue 4.2.4 101

 Draft file name (Part of file_name):

Specification of the file name and the index. The index is incremented for each new
.dat file if the path and file name specified is not modified.

The "#" character is used as a placeholder for the index. Specify multiple placeholders
for multi-digit indices.

##: 0 ... 9  10 files
##: 00 … 99  100 files

If the path is not modified, after the index values overflows, the oldest .dat files are
overwritten.

 Sampling time (in seconds) (sample_time)

This value is the time base for the .dat file. It defines the time in seconds between
two values of a measurement signal that are saved.

In case of unbuffered values, specify the task interval for the program that contains the
DFW block.

You need to enter the time period corresponding to the depth of the data array for
buffered values.
For more information, please refer to "Sub-tab "Signal configuration“, Page 102".

Important Note

The preparation of the signals to be measured and the DFW block must run in the
same task interval. If this is not the case, the time axis in the .dat file is either stretched
or compressed.

Example of sampling time

If the task in which you provide the data runs in an interval of 10 ms, you must set the
sampling time in the DFW block to 0.01 sec.

If you want the values to be saved only every 50 ms, it is not sufficient only to set the
sampling time to 0.05 sec. (in this case, the same data gets saved, but the X-axis
contains a time period that is 5 times longer), but instead, you must specify a clock
cycle at the STORE_VALUES connector that becomes "TRUE" only at every 5th cycle.

However, it is simpler to allow the block to run in a 50 ms task, and to let the
STORE_VALUES connector remain static with "TRUE".

Tip

Despite correct settings of the parameters, if you see a time axis in the analysis that is
too long or too short, please check whether the real task interval time (Block
EVALTIMES) matches the one configured. For small cycle times it is recommended to
activate the turbo mode in order to keep the task interval constant.

 Manual ibaLogic-V4

102 Issue 4.2.4

7.3.1.3 Sub-tab "Signal configuration"

figure 44: Sub-tab "Signal configuration"

The "Signal Configuration" sub-tab contains the areas:

 Module definition:
defines the module name, module type, the number of signals and their data type

 Signal definition:
defines the signal name and the signal description

Important Note

In the present version of ibaLogic, you need to configure the modules and signals in
the DFW block completely before connecting a measurement signal.

Reason: ibaLogic creates internal structure and array data types that cannot be
modified once they have been used. If you modify the signal configuration
subsequently, you must either remove all joiners that have been inserted automatically
and rewire hem or adapt all corresponding data types in the ST blocks.

In order to create a new module, an entry is provided at the end of the module list that
contains a blank name field. Simply enter the module name here and configure this
module. After quitting, a new entry is again generated automatically at the end of the
list.

In principle, you can create as many modules as you please. Furthermore, the
maximum number depends on your license.

ibaLogic-V4 Manual

Issue 4.2.4 103

Description of the modules:

 Name:
Module name that must conform to the IEC standard.

 Unbuffered mode:
Recording of individual values. One data sample is saved in each cycle. The value
in the "Values" column is not considered.

 Buffered mode:
Recording packets. An array of data samples is saved in each cycle. The value in
the "Values" column specifies the array depth, i. e. the number of samples.
For further information, please see "Buffered Mode, Page 192".

 Values:
Meaningless in the "Unbuffered" mode.
Number of samples saved per cycle in the "Buffered" mode.

 Digital values:
Number of binary signals in this module (max. 32)

 Data type of the analog values, REAL and INTEGER are permissible

 Analog values:
Number of analog values in this module (max. 32)

All signals pertaining to the module marked are displayed below the signal definition.
The signals are created with the default names (Digital_nn and Analog_nn). You can
edit the signal names and enter a description for each signal under "Information".

Note

You cannot modify the signal configuration as long as the "DATA" connector is
connected with data. You have to break the connection if you wish to make any
modifications. In the process, any joiners that have been generated automatically are
removed.

Toolbar for editing the module definition record:

Symbol Name/Tooltip Explanation

Append Adds a new blank module definition record.

Delete Removes the module definition record selected.

Edit Releases the module definition record for editing.

End Edit The data of the modified module definition record is
accepted.

Cancel Edit The data of the modified module definition record is not
accepted. The input is canceled.

- Number of records

For more information, please see “Practice Examples, Page 248“.

 Manual ibaLogic-V4

104 Issue 4.2.4

7.3.1.4 Generate Storage Structure

The simplest case of storing the .dat files generated is to specify a fixed folder and a
fixed base name for the files, with ibaLogic assigning a serial number to the base name
automatically.

If you need a storage structure with sub-folders and file names, which, for example,
should contain the current batch number, this needs to be programmed.

Example

A new file should be created every hour. The file name should contain the hour value in
the form of a name.

Implementation

The file name is formed using the current hour value. A low pulse is fed to the
STORE_FILE input of the DFW when the value changes (change of hour) using the
DELAY and EQ blocks. In this manner, the upcoming name is accepted for the next
.dat file.

The file name is formed with the CONCAT blocks. The path name and base file name
are available at the first CONCAT. The hour is appended to this and with the 2nd
CONCAT the .dat extension is appended. Thus, the file name c:\iba11.dat is generated
here.

figure 45: Example: CONCAT blocks

You can also compose a unique .dat file name including the path in exactly the same
way. If you specify a new path, ibaLogic creates it automatically.

ibaLogic-V4 Manual

Issue 4.2.4 105

7.3.2 TCPIP_SENDRECV

This block enables transmission and reception of data via TCP/IP.
The data here is raw data that is sent via TCP/IP. In this manner, all native TCP/IP
protocols can be re-created.

figure 46: TCPIP_SENDRECV Function block

Note

This block requires a license.

Important Note

You can configure the maximum number of parallel connections permissible in
Windows XP. The value depends on the Windows configuration. You can adjust this
value with the help of an entry in the Windows registry database.

For more information, please see "Number of TCP/IP connections possible, Page
318".

 Manual ibaLogic-V4

106 Issue 4.2.4

7.3.2.1 Inputs

Connector Data type Explanation

SEND_DATA Any Data to be transmitted The data type is ANY, i.e. it aligns
itself with the interface data type, e. g. a structure, string,
array.

SEND Bool When it is "TRUE", data available at SEND_DATA is
transmitted. This input is not edge-oriented, i. e. a fixed
"TRUE" at the input initiates transmission in every cycle.

SEND_LENGTH Udint Length of the data to be transmitted in bytes. If the value is
0, all data available is transmitted

NEW_PARA Bool Accept new link parameters.

REM_ST_ADR String IP of the link partner. This IP is required only for active link
establishment, i. e. when the input ACTIVE = TRUE. If
ACTIVE = FALSE, the block waits for the partner, which
must specify the IP address of the PC or the PADU-S-IT.
You can also enter the computer name instead of the IP
address. Resolving the name may take some time during
creation depending on the configuration of the Operating
System.

PORT_NUMBER Udint When ACTIVE = TRUE: Port number of the partners.
When ACTIVE = FALSE: Own port number

TERMINATE_STRING Udint Strings are terminated with a NULL byte.
This input is evaluated only when strings are available at the
SEND_DATA input.

FLUSH_AFTER_READ Bool Deletes the receive buffer after reading the data.

BYTESWAP Int = 1: Swap based on data type (AB CDEF  BA FEDC)
= 2: Swap 2 Bytes respectively (ABCD  BADC)
= 4: Swap 4 Bytes respectively (ABCD  DCBA)

ACTIVE Bool TRUE: (ibaLogic is the TCP/IP client)
The block attempts to establish a link to the IP and the
PORT, which are specified in REM_ST_ADR and
PORT_NUMBER respectively.

FALSE: (ibaLogic is the TCP/IP server)
It waits for incoming connections at the port number
configured. The IP address is not evaluated.

HIGH_PRIO Bool The data is fetched with a higher priority from the Windows
network buffer and written in the input buffer.

NOTE

By default, this function should be set to "FALSE".

RECV_OK Bool TRUE: Data received is OK, and the input buffer can be filled
with the new data.

FALSE: The data last received remains until the input is
triggered again.

RECV_LENGTH Udint Defines the telegram length in bytes. This input is evaluated
only if the input, USE_RECV_LENGTH = TRUE

USE_RECV_LENGTH Bool TRUE: If the input buffer is larger than the RECV_LENGTH
configured, there is only one telegram with the length
configured at the output, RECV_DATA.

FALSE: At the output, RECV_DATA, there is one telegram
with the maximum size of the data type available at the
output, RECV_DATA.

RESET_LAST_ERROR Bool Resets the error outputs

ibaLogic-V4 Manual

Issue 4.2.4 107

7.3.2.2 Outputs

Connector Data type Explanation

RECV_DATA Any Received data. The data type aligns itself with the
interface data type, e. g. a structure, string, array.

RECEIVED Bool This output is TRUE as soon as any data is received

RECVD_LENGTH Udint Length of the data received in bytes.

SEND_BUFFER_FILLED Bool TRUE when the internal transmit buffer is full. i. e. the
block cannot transmit data fast enough

LAST_ERROR_CODE Dword Last error message as a DWORD in hex format

LAST_ERROR_STRING String Last error message as clear text

Example of a Send - Receive procedure

figure 47: Example of a Send - Receive procedure

In this example, the data to be transmitted is available in the form of a structure. The
data is transmitted with the help of a manual trigger.

There is a switch at NEW_PARA, in order to re-establish the link for test purposes or in
case of modification in the link parameters, if required.

This block is passive and waits until a link has been established by the communication
partner.

The data received arrive at RECV_DATA. The input RECV_OK is set permanently to
"TRUE", since the data does not have to be buffered intermediately, as they can be
well processed within the task cycle time configured.

7.3.3 PIDT1_CONTROL

Universal PIDT1 controller that can be switched to operating modes as a P, I, PI or
PIDT1 controller.

 Set the starting value of the integrator

 Hold the instantaneous value of the integrator

 Pre-control value WP

 Controller limits LL and LU

 Proportional coefficient KP

 Manual ibaLogic-V4

108 Issue 4.2.4

 Reset time TN

 Control direction reversible

 Indication when the limits configured are reached

 Display of the error signal

 Display of separate P, I and DT1 controller outputs

figure 48: PIDT1_CONTROL Function block

figure 49: Block diagram of a universal PIDT1 controller

ibaLogic-V4 Manual

Issue 4.2.4 109

7.3.3.1 Inputs

Connector Data Type Explanation

W Lreal Set-point value

X Lreal Actual value

WP Lreal Pre-control value

LL Lreal Lower limit value (valid for Y and YI)

LU Lreal Upper limit value (valid for Y and YI)

SV Lreal Set value for the integrator is accepted with SET

KP Lreal P gain

TN Time Reset time

KV Lreal D gain

T1 Time D time constant

ENAB Bool Controller release

INV Bool Invert the sign of the control deviation

EN_P Bool Activate the P controller

EN_I Bool Activate the I controller

SET Bool Set the integrator with the value SV

HI Bool Stop the integrator

EN_D Bool Activate the D controller

7.3.3.2 Outputs

Connector Data type Explanation

Y Lreal Control value = YP+YI+YD+WP

YE Lreal Control deviation = W-X

YP Lreal Output value of P controller = KP*YE

YI Lreal Output value of I controller = YIn-1+KP*YE*Ta/TN

YD Lreal Output value of D controller = α*YDn-1+ α*KV*ΔYE
α = 1/ (1+Ta/T1)
ΔYE = (YE-YEn-1)

QL Bool Lower limit value reached

QU Bool Upper limit value reached

 Manual ibaLogic-V4

110 Issue 4.2.4

7.3.3.3 Details / Signal trends

The various signal trends of the individual
controller components are illustrated in the following diagrams.

Control value Y:

The control value Y is the sum of the P, I and D components and the pre-control
value WP.

If the input, ENAB (controller release) is not set, the control value is always 0.0.

Input WP, pre-control value:

This input is added to the output Y.

Input LL/LU, lower / upper limit value:

Note

The total output Y, as well as YI are limited.

The outputs, QL and QU, accordingly take up the value TRUE.

The following controllers are used in practice:

PI controller PD controller PID controller

The P, I and DT1 components are given special consideration
in the following.

ibaLogic-V4 Manual

Issue 4.2.4 111

7.3.3.4 P component: (Parameter: KP, EN_P)

The P component of the controller is calculated as KP*YE. The value is fed to the
output value only when EN_P is set.

figure 50: P component

figure 51: P component

 Manual ibaLogic-V4

112 Issue 4.2.4

7.3.3.5 I component: (Parameters KP, TN, SET, SV, HI and EN_I)

The I component of the controller is calculated as YIn := YIn-

1 + KP * YE * Ta/TN (Ta = Task time).
This component can be set to the value of the input SET with the input SV. A value of
"TRUE" at the HI input stops the integrator. The value is fed to the output value only
when EN_I is set.

Correlations

TN = KP*Ta = KP/KI

Example 1

KP = 1.0

TN = 1 s

figure 52: I component

figure 53: I component

ibaLogic-V4 Manual

Issue 4.2.4 113

7.3.3.6 DT1 component: (Parameters KV,T1 and EN_D)

The DT1 component of the controller is obtained as YD: = α*YDn-1 + α*KV*ΔYE

α = 1/ (1+Ta/T1) ΔYE = (YE-YEn-1). (Ta = Task time)

The value is fed to the output value only when EN_D is set.

Example 1

KV = 0.5

T1 = 1 s

figure 54: DT1 component

figure 55: DT1 component

 Manual ibaLogic-V4

114 Issue 4.2.4

Example 2

KV = 1

T1 = 2 s

figure 56: DT1 component

ibaLogic-V4 Manual

Issue 4.2.4 115

7.3.3.7 PIDT1 component – Total response

Example 1

Example of the complete PIDT1 controller with signal trends.

figure 57: PIDT1 controller with signal trends

figure 58: PIDT1 controller with signal trends

 Manual ibaLogic-V4

116 Issue 4.2.4

7.3.4 RAMP

Ramp block with 2 different ramps: Manual and automatic mode

 Set-point value limit

 Start up the new set-point value via the ramp

 Set the set-point value

 Indication when the limit values are exceeded

figure 59: RAMP Function block

ibaLogic-V4 Manual

Issue 4.2.4 117

7.3.4.1 Inputs

Connector Data Type Meaning / Usage

X Lreal Input value (Set-point)

LL Lreal Lower limit value

LU Lreal Upper limit value

SV Lreal Set value, output is set to this value with SET

RM Lreal Manual ramp (1/s), valid for CD and CU

RA Lreal Automatic ramp (1/s), valid for CF

CD Bool Ramp falling (manual ramp control)

CU Bool Ramp rising (manual ramp control)

CF Bool Ramp as per the input value (automatic ramp control), has
precedence over CD and CU

SET Bool Set output value to SV

7.3.4.2 Outputs

Connector Data Type Meaning / Usage

Y Lreal Output value; Yn = Yn-1 + UR

r = ramp used

UR Lreal Ramp used (1/s)

QE Bool Output value = Input value

QL Bool Lower limit value reached

QU Bool Upper limit value reached

 Manual ibaLogic-V4

118 Issue 4.2.4

7.3.4.3 Example

The inputs CD, CU and CF control the ramps. If none of the inputs is active, the last
output value is fixed. The output UR then displays the ramp used as the value 0.

If the input CD is active, regardless of the input value, the current output value at the
manual ramp is scaled down to a maximum of the lower limit.

If the input CU is active, regardless of the input value, the current output value is raised
via the manual ramp up to a maximum of the upper limit.

If both CD and CU are active simultaneously, UR is set to 0. The output value does not
change.

figure 60: Controlling ramps

figure 61: Controlling ramps

ibaLogic-V4 Manual

Issue 4.2.4 119

If the input CF is active, the output value tracks the input value via the automatic ramp.
If the input value exceeds the limit, the output value changes in line with the ramp only
up to the limits.

figure 62: Controlling ramps

figure 63: Controlling ramps

If CF is set, the inputs CD and CU do not have any effect.

 Manual ibaLogic-V4

120 Issue 4.2.4

7.3.5 FUZZY_CONTROLLER

Fuzzy logic is a theory that, above all, has been developed for modeling uncertainties
and fuzziness of colloquial descriptions. For example, you can use it to capture the
fuzziness of specifications such as "a little", "quite" or "considerable" mathematically in
models.

Fuzzy logic is beneficial particularly when a precise logical or mathematical description
for a process is not available, cannot be created or the correlations are too complex,
but, for example, intuitive know-how of an operator is available.

Fuzzy logic is based on fuzzy quantities and so-called associative functions, which map
objects to fuzzy quantities and to compatible logical operations on these quantities and
their inference. Moreover, in the case of technical applications, methods must be
considered for the conversion of specifications and correlations in fuzzy logic.

figure 64: FUZZY_CONTROLLER Function block

ibaLogic provides the FUZZY_CONTROLLER function block
for control using fuzzy logic.

Principle of Operation

The fuzzy controller obtains an output value based on a set of parameters that it takes
from a parameter file related to the application. With the commencement of the
evaluation with connector ENABLE = TRUE, the parameters from the file whose path
specified to the connector via FILEPATH, and evaluation is done in the same
evaluation in ibaLogic for obtaining the output value with the new data loaded.

The parameter file can be reloaded via the LOAD_FILE control signal even during the
current evaluation, without interrupting the output value evaluation or data acquisition in
ibaLogic. The output value can be derived from up to 8 input values IN0 ... IN7, and is
used as a set-point value at the OUT connector or as a control variable of a process.

ibaLogic-V4 Manual

Issue 4.2.4 121

7.3.5.1 Inputs

Connector Data Type Explanation

ENABLE Bool Start the evaluation procedure when the input is
"TRUE". Data from the parameter file is accepted
with the rising edge.

LOAD_FILE Bool Accept the data in the parameter file with the
rising edge of the signal during the evaluation
time.

FILEPATH String Path specification for the data of the parameter
file

IN0..IN7 Lreal Input data, on the basis of which the output value
is evaluated.

7.3.5.2 Outputs

Connector Data
type

Explanation

OUT Lreal Output value of the fuzzy controller; the output = 0,0 in
case of an error or if enable = "FALSE"

TERM_ARRAY Lreal
(0..8)

Level of association µ(x) of the individual linguistic
terms from which the output value is formed

TERM_STRING String Specification of the current linguistic terms from which
the output value and the percentage of the level of
association are formed.

ERROR_CODE Int Output of the error code

ERROR_STRING String Text output of a brief error message.

 Manual ibaLogic-V4

122 Issue 4.2.4

Handling

Configuring and customizing is performed using the "ParamFuzzyTool.exe" application.
You can get this upon request from the iba Support and contact, Page 330.

The function block of the fuzzy controller is located under "Function blocks -
SPECIALS".

The path of the parameter file is provided as a string to the FILEPATH connector. With
the rising edge of the Boolean signal at the ENABLE connector, data from the
parameter file is accepted and the evaluation of the output value commences promptly.
As long as the Enable signal is "TRUE", the output value is evaluated using the LREAL
values available at the connectors IN0 ... IN7. The default value of the ENABLE
connector can be defined with "TRUE". This results in permanent evaluation of the
output value.

The connector of the LOAD_FILE Boolean signal at the function block of the fuzzy
controller offers the option of loading a new parameter file while an evaluation is being
performed. The rising edge of the LOAD_FILE signal causes the data in the fuzzy block
to be accepted as the new set of parameters to form the basis of the output value
evaluation.

ibaLogic-V4 Manual

Issue 4.2.4 123

7.4 User-specific Function Blocks

ibaLogic has a library of pre-defined function blocks. Nonetheless, it may be necessary
to define your own function blocks for a more efficient solution to your problem. There
are three types of user-specific function blocks:

 Function blocks that are created in ibaLogic using the high-level programming
language, Structured Text (ST).

 It is also possible to combine existing graphics programming to macros.

 Function blocks that are created external to ibaLogic in a high-level language (C++,
others on request e.g.: FORTRAN) and are integrated as DLL into ibaLogic.

After they are created, all these function blocks are treated like standard function
blocks.

7.4.1 Function Blocks

In order to create a new function block, position the mouse pointer to a free location in
the program window and select "New - New Function Block..." in the context menu. The
"Create Function Block" dialog box is displayed.

The fields for the name and the table for defining the inputs, outputs and internal
variables are located at the top of the box.

figure 65: "Create Function Block" dialog box

 Manual ibaLogic-V4

124 Issue 4.2.4

7.4.1.1 General Settings

Definition name

The definition name is the name with which the block is saved in the block folder. The
instance name is formed from this name by appending an index.

Note on difference between Definition - Instance

For more information, please see "Instances, Page 58".

Note

iba recommends that you use different prefixes for function blocks and macros, e.g.
"FB_" and "MB_". You can configure the settings under the "Tools – Options –
 Function Blocks" menu.

Similarly, you can also find the default values for the names and data types of the
variables, and iba recommends using the names "i", "o", "io" and "v". You can
configure data types based on your requirements.

Instance name

The instance name is not displayed during creation. It is displayed only when you
retrieve a block to use it in a project.

Description

You can describe the block function in more detail in this field. This description is
displayed as a tooltip when you move the mouse pointer over the function block name
in the library.

Number of Inputs / Outputs / Variables

You specify the number of variables used here. One line is created in the table for each
variable.

ibaLogic-V4 Manual

Issue 4.2.4 125

Variables

The list of variables is available either as a tree or as a table for display.

figure 66: "Create Function Block" dialog box with the list of variables

 You can open the tree by clicking on the "Variables" tab to the left of the table.

This view is hidden since you can configure and customize the variables only in the
variables table.

figure 67: Function block variables

 Manual ibaLogic-V4

126 Issue 4.2.4

Variable

Column Explanation

Index Each variable type begins with index 1.

Data Type Selection box for accepting a defined variable type. You can also create
new user types here. You can find the default value under the "Tools
Options" menu.

Name Default value consists of prefix and index. You can, however, also edit a
new name.

Default
value

Please note that the notation of the values depends on the data type.
For more information, please refer to "Syntax Description of
Structured Text, Page 128". The value is assigned to the variable
provided that no link is connected (for input variables) or there is no
assignment within the block code.

Description Text field that is displayed as a tooltip in the block folder.

Value In the case of arrays and structures, the current values of the variables
displays only the first element (only in the online mode).

Tip

This value can be modified manually, but it is re-
evaluated in the next cycle and hence, if required,
overwritten.

Important Note

If you remove a link to the input connector in the online
mode, the last value remains.

Using the buttons on the right, you can change the sequence of the variables, add and
delete new variables at the position marked.

Icon Explanation

Add an element.

Delete an element.

Interchange the elements.

ibaLogic-V4 Manual

Issue 4.2.4 127

7.4.2 Structured Text Editor

You can define the functionality of a function block using the Structured Text Editor.

figure 68: Structured Text Editor

The following buttons are located above and below the text input field:

button Explanation

Set a breakpoint
(active only in the online
mode)

By clicking on this button, program code execution stops at the insert text
position of the mouse cursor.

Delete breakpoint
(active only in the online
mode)

It is used to remove the breakpoints at the insert text position of the
mouse cursor.

Continue
(active only in the online
mode)

Program execution is continued. Program execution is stopped again at
the breakpoint in the next cycle.

Check ST Syntax test of the code entered, without compiling it

Enable / Disable Intellisense Enable or disable the Intellisense resource

Danger by using functions in the online mode!

We dissuade you strongly from using these functions (Set breakpoint, delete
breakpoint, continue), if you are using outputs for control and regulation functions in
ibaLogic in the online mode, since there is a risk of personal injury and damage to
property that could result by doing so (see "Time behavior, Page 230").

 Manual ibaLogic-V4

128 Issue 4.2.4

7.4.2.1 IntelliSense

IntelliSense is a resource for completing entries automatically. It provides additional
information and selection options to the programmer to facilitate the completion of data
entry.

During the creation of blocks, also new variables are automatically added to
IntelliSense.

In particular, it simplifies working with structures considerably, since with structure
variables, after entering the "." separator, all elements defined are provided
immediately for selection.

figure 69: Structured Text editor with IntelliSense enabled

Example: The IntelliSense selection window appears by entering "IF". You can enter
the choice highlighted with <Return>.

Statements such as IF..THEN..ELSE / WHILE…/ REPEAT… are provided only after
you enter the first word, and can, hence, be taken over completely at this stage as a
framework.

You can make the selection using <Cursor up> or <Cursor down>, and accept the entry
with <Tab>.

7.4.2.2 Syntax Description of Structured Text

For example, Structured text can look like the following:

1 (* Difference between i2 and i1 *)

2 Difference := i2 - i1;
3
4 (* Mean value calculation *)

5 Mean_value := (i1 + i2) / 2.0;

figure 70: Syntax of Structured Text

Notations:

 Comments are enclosed in "(*" and "*)".

 Statements must be terminated with a semicolon.

 The value of the result must be written on the left of ":=".

 Expressions consist of operators and operands.

Important Note

Apart from the operators and statements described in the following, you can also call
up some functions that are available graphically as a block, even from within the ST.
You will find notes on whether and how these can be in the ST in the description of the
functions in the section "Standard Function Blocks, Page 280". There, for each block
with the keyword "ST": a note has been provided regarding its usability in ST.

ibaLogic-V4 Manual

Issue 4.2.4 129

7.4.2.3 Operators

List of the operators sorted by precedence:

Operator Example Value in the
example

Description Priority

() (2+3) * (4+5) 45 Brackets Highest

** 3**4 81 Exponentiation

- -10 -10 Negation

NOT NOT TRUE Logical negation

* 10**3 30 Multiplication

/ 6/2 3 Division

MOD 17 MOD 10 7 Modulus (Division
remainder)

+ 2+3 5 Addition

- 4-2 2 Subtraction

<, >, <=, >= 4 > 12 FALSE Comparison

= T#26h = T#1d2h TRUE Equality

<> 8 <> 16 TRUE Inequality

&, AND TRUE & FALSE FALSE Boolean AND

XOR TRUE XOR FALSE TRUE Boolean Exclusive
Or

OR TRUE OR FALSE TRUE Boolean Or Lowest

7.4.2.4 Statements

Key-
word

Example Description

; ; Blank statement

:= Var1 := 12; Assigning the value 12 to the variable name
given on the left.

f(i1, i2, …) o1 :=
concat (iDir, iFile, v1);

Function call, see also the description of the
function blocks

IF IF i1 < i2 THEN
 o1 := 1;
[ELSIF i1 =i2 THEN
 o1 := 2;]
ELSE
 o1 := 3;
END_IF;

Conditional statement.

The condition is a Boolean expression (that
yields the result "TRUE" or "FALSE")

Optional extensions are given in square
brackets [...].

CASE CASE i1 OF
1: o1:=3;
2: o1:=4;
3,4,5: o1 := 5;
 o2 := 6;
11..15: o1:= 11;
[ELSE o1 := 0;
 o2 := 0;]
END_CASE;

Case statement.

The argument "i1" is an expression of type
ANY_INT or ENUM.

There are one or more statements per case.

A case can have several integers (3,4,5) or
enumerators or ranges of integers (10...15).
The ELSE branch is optional.

Optional extensions are given in square
brackets [...].

 Manual ibaLogic-V4

130 Issue 4.2.4

Key-
word

Example Description

FOR FLAG := FALSE;
FOR ix:= 1 TO 100 [BY 2]
DO
 IF o1[ix] = iy THEN
 FLAG := TRUE;
 EXIT;
 END_IF;
END_FOR;
IF FLAG THEN (* found*)

Unconditional loop (Iteration).

The step (BY xx) is optional. If it is not
present, the step is 1.

The type of the loop variable is ANY_INT
and it should not be modified within the loop.

Optional extensions are given in square
brackets [...].

Attention

There is a risk of endless (infinite) loops

WHILE WHILE i1 > 1 DO
 o1 := o1/2;
END_WHILE;

Conditional loop

Attention

There is a risk of endless (infinite) loops

REPEAT REPEAT
 o1:= o1 * i1;
UNTIL o1 > 10000
END_REPEAT;

Conditional loop

The difference to WHILE is: The loop is
executed at least once, even if the condition
is not met right at the beginning.

Attention

There is a risk of endless (infinite) loops

EXIT FLAG := FALSE;
FOR ix:= 1 TO 100 [BY 2]
DO
 IF o1[ix] = iy THEN
 FLAG := TRUE;
 EXIT;
 END_IF;
END_FOR;
IF FLAG THEN (* found*)

Premature termination of a FOR, WHILE or
REPEAT loop.

The first statement is executed after the next
end of the loop, i. e. with nested loops,
execution continues with the next higher
level.

Optional extensions are given in square
brackets [...].

RETURN oFLAG := FALSE;
FOR ix:= 1 TO 100 [BY 2]
DO
 IF o1[ix] = iy THEN
 oFLAG := TRUE;
 RETURN;
 END_IF;
END_FOR;

Return statement, premature termination of
the function block.

Example: If the value iy is contained in the
array ix, the result is TRUE, otherwise it is
FALSE.

Optional extensions are given in square
brackets [...].

ARRAY access <ArrayType>[index,…]

o1 := iArray[0];
o1 := iArray[0,0,…];

o1 := iArray[0][0];

The indices are given in square brackets

Access to a 1-dimensional array

Access to an n-dimensional array

Access to a nested array

For more information, please refer
to "ARRAY TYPE Group, Page 148".

Expressions are not permissible as indices,
e. g.: MyArray[v1+1]

ibaLogic-V4 Manual

Issue 4.2.4 131

Key-
word

Example Description

ENUM access Enumerator

IF (i1 > 0) THEN
 v1 := forward;
ELSIF (i1 < 0) THEN
 v1 := back;
ELSE
 v1 := stop;
END_IF;

Example:

"Switch" is an ENUM type,
"Forward", "Stop", and "Back" are the
enumerators.

The type of the variable v1 is "Switch".

For more information, please refer to
"ENUM TYPE Group, Page 146

Structure access <STRUCTURE NAME>.ELEMENT

o1.Temperature := i1;;
o1.Speed := i2;

The structure elements are separated
with "." from the structure elements.

Example:

"o1" is a variable of type structure.
"Temperature" and "Speed" are structure
elements.

For more information, please refer to
"STRUCT TYPE Group, Page 148".

7.4.2.5 Constants

Description Example

Integer and bit strings
(except BOOL)

-12 0 123_456 +986

Decimal representation

Binary representation 2#1111_1111 (255 decimal)
2#1110_0000 (240 decimal)

Hexadecimal representation 16#FF or 16#ff
16#00F0_FFE0

Real -12.0 0.0 0.4560 3.14159_26

Real with exponent -1.34E-12 ODER -1.34e-12
1.0E+6 ODER 1.0e+6
1.234E6 ODER 1.234e6

BOOL 0 OR FALSE
1 OR TRUE

Time constants Type identification with: „T#",
Time specification with: „d" (day), „h" (hour), „m" (minute),
„s" (second) and „ms" (millisecond).

T#12d12h17m42s
T#16d_2h_5m

For all specifications, in general: It is permitted to use a simple underscore for optical structuring.

 Manual ibaLogic-V4

132 Issue 4.2.4

7.4.2.6 Strings

Strings are enclosed in single quotation marks.

A $ character followed by a hexadecimal number is interpreted as ASCII code.

Note

IEC also permits double quotation marks. These WSTRING have not been
implemented at present.

Special characters allowed in strings

Combination Interpretation when printing out

$$ Dollar character

$' Single quotation mark

$L or $l Line feed (LF)

$N or $n New line (NL)

$P or $p Form feed (page)

$R or $r Carriage return (CR)

$T or $t Tabulator

Note

A RL (Carriage Return / Line Feed) is equivalent to a $N (New Line) and is, hence,
displayed automatically in the function block during further processing as $N (see
entry in STANDARD VALUE and display under VALUE).

figure 71: Variable entry

Characteristics and examples of strings

Example Explanation

'' Blank string (Length = 0)

'A' String of length one, contains the character A

' ' String of length one, contains the blank character

'$'' String of length one, contains the single quotation mark

'"' String of length one, contains the double quotation mark

'RL' String of length two, contains the ASCII characters for CR and LF

'$$1.00' String of length five, contains "$1.00"

 String of length two, contains "Ä" and "Ë";

'ÄË' In one case, directly as ASCII characters and

'$C4$CB' in the second case, with the corresponding hexadecimal code of the
extended character table (see "Character tables, Page 322")

ibaLogic-V4 Manual

Issue 4.2.4 133

7.4.3 Macro block

You use macros in order to combine associated functions and thus, achieve a clear
program layout.

Properties:

 You can export macros.

 You can copy macros to the global folder, and, as a result, you can use them
several times and even in other projects.

 Macros may contain other macros and, of course, user-created function blocks, too.

 No OTCs, switches and sliders are permissible within macros, but IPCs are
allowed. Links to other program components are permissible only with input and
output connectors.

 You cannot use any hardware input and output resources directly within macros.

 A macro that has been created can be expanded again, i. e. the macro is resolved
and the blocks that it contains are displayed at the next higher level.

7.4.3.1 Creating a Macro Block

Macros are created manually in the same way that function blocks are created.

Procedure

1. Position the mouse pointer on a free location in the program window and call up
"New... - New Macro Block..." in the context menu. A dialog box is displayed for
entering the block names and variables. For more information, please see "Function
Blocks, Page 123".

2. Exit the dialog with <OK>. A blank macro block is displayed.

3. Double click on the macro block displayed in order to open the internal graphical
programming interface.

4. Place and manage the function blocks or other macro blocks within this macro
block so that you achieve the desired functionality.

Example

In this example the integer input is monitored for changes and every change is counted
and placed at the output.

figure 72: Integer monitoring

 Manual ibaLogic-V4

134 Issue 4.2.4

As in the case of every program, a new register is created for the contents of the macro
with the macro name within the program designer.

Please note the evaluation context here. You come to the calling level by clicking on
this. For further information, see "Arrangement of the Tabs and Programming Windows,
Page 62".

7.4.3.2 Opening a Macro

Procedure

 Double click on the macro block instance in a program or macro in the Workspace
Explorer.

7.4.3.3 Combining existing components into a Macro Block

ibaLogic provides the option of combining several blocks already existing into one
Macro Block.

 To do this, select the blocks that need to be combined, as illustrated in the following
diagram.

Note

Please note that,

 you also mark the associated links when making the selection.

 no OTCs have been marked.

 links whose target or source block are not selected, are created as
macro input or output.

 Open the context menu using one of the elements selected.

 Select the option "Implode To Macro".
The "Edit Function Block" dialog box is displayed.

 Assign a meaningful name to the new macro block and to the inputs and outputs.
Assign meaningful names that conform to the IEC standard.

ibaLogic-V4 Manual

Issue 4.2.4 135

Tip

You can also make these changes subsequently by clicking on the macro created
using the right mouse button and selecting the macro properties.

Result

The result is a new macro block (IMPL_MB_1) having the same functionality as the
blocks selected previously.

figure 73: Macro block (IMPL_MB_1)

 You can open the macro by double clicking and continue to edit the graphical
elements.

In the online mode, you can also see the current values in the value pads depending
on the evaluation context.

For further information on the evaluation context, please see "Arrangement of the Tabs
and Programming Windows, Page 62".

7.4.3.4 Expanding a Macro Block

An existing macro block can be expanded again. In doing so, the blocks defined are
placed at the next higher level.

Procedure

1. To do this, mark the macro block.

2. Select "Expand From Macro" in the context menu.

Example

A simple macro block having an internal adder that adds both inputs needs to be
expanded again.

Result

The following diagram appears after expanding:

 The adder has been revealed.

 The original macro definition, however, continues to be available in the block library.



figure 74: Macro block MB_Set-point_1 figure 75: Expanded connection

 Manual ibaLogic-V4

136 Issue 4.2.4

7.4.4 Creating your own DLLs

Creating macros and function blocks using ST is a very easy option for handling
several tasks in the field of automation technology. But just as it is easy to create the
macros and function blocks, it is also simple to copy them and to understand their
contents, i. e. their function.

However, sometimes it is desirable to disclose less of one's own technological
competence and, instead, for example, in case of a highly intelligent process-oriented
technical solution, it is desired to prevent further uncontrolled proliferation of this
technological know-how.

In such a case, it is beneficial to have the option of creating your own DLLs that contain
the knowledge only in compiled form and, thus, cannot be extracted easily.

You can also realize these special connections

 in order to create complex blocks.

 in order to work with the Windows environment.

 in order to allow tasks to execute in your own thread, among others.

In this manner, you can also integrate another high-level language under certain
conditions.

You can then see the DLL created in ibaLogic as a completely normal function block
with the name, inputs and outputs. This can be differentiated from an ST function block
only in the fact that you do not see any code in the program component.

Other documentation

This section contains only a brief overview, and detailed instructions are furnished on
the CD supplied (e. g. Manual "ibaLogic_DLL-Erstellung_in_C++_v2.0_de.pdf" in the
\ibaLogic_V4.x.x\Samples-DLL\ directory).

Note

Using DLLs requires a license. The DLLs are not evaluated without a valid dongle.

Compiler

All DLLs written in C++ or Fortran are supported.

The following compilers have been tested for writing and compiling the DLLs:

 Microsoft Visual C++ 5.0

 Microsoft Visual C++ 6.0

 Intel Visual Fortran 10.0

 Microsoft Visual C++ 2005, 2008, 2010

However, there are still differences for the two device classes with ibaLogic (WinXP or
PADU-S-IT). DLLs for the PADU-S-IT platform must be compiled specifically for
Windows-CE.

ibaLogic-V4 Manual

Issue 4.2.4 137

7.4.4.1 Source Files and Descriptions Required

The following source files and descriptions, which are supplied on the ibaLogic
installation CD, are necessary for creating a DLL:

Descriptions:

 Manual on creating a DLL with C++
(for WinXP and PADU-S-IT)

 Manual on creating a DLL with Fortran
(only available for Windows XP)

Files: (Please refer to the descriptions for the exact names of the files)

 Framework file:
It contains the procedures and the DLL body; the user can add inputs or outputs or
modify the procedures, InitEvaluation, Evaluate and ExitEvaluation. Either in C++ or
Fortran.

 Other files depending on the language:
Assignment of DLL procedures and numbers, interface definition etc. It is not
necessary for the user to make any modifications here.

7.4.4.2 Requirements and Notes

You should take note the following when creating DLLs:

 The runtime of the DLL increases the runtime of the tasks in which they are called.

 iba recommends that you remove time-consuming functions to threads.

 ibaLogic can be started as the executing program to test the DLL.

Important Note

ibaLogic cannot detect and trap programming error in a DLL, which means that such
errors can lead to ibaLogic "crashing". Please bear this in mind as a user when
creating a DLL.

7.4.4.3 Integrating the DLL into ibaLogic

When the DLL was created, it must be copied to a folder of ibaLogic.
(Usually "C:\Program Files\iba\ibaLogic v4\Server\Dll").

After ibaLogic Server restarts the next time, this DLL is available as a function block in
the "CUSTOM" folder and can be dragged & dropped like any other block in a program
and integrated in it.

Example

The "Para_File_Read_Store_Dll" has been created and copied to the folder. It is
contained in the "CUSTOM" group.

 Manual ibaLogic-V4

138 Issue 4.2.4

figure 76: Para_File_Read_Store_Dll in the function block navigator

figure 77: Para_File_Read_Store_Dll as a function block in the program

figure 78: Para_File_Read_Store_Dll properties

 The "Edit Function Block" window is displayed when you double click on the
function block.
You cannot see the code. The inputs and outputs including their descriptions are
visible.

ibaLogic-V4 Manual

Issue 4.2.4 139

7.5 Data types

A data type is assigned to each variable.

In contrast to version V3, ibaLogic-V4 not only supports the elementary data types and
arrays, but also composite (structures) and other user-defined data types.

The data types that can be used in ibaLogic can be divided into the following
categories:

 Standard data types

 Composite data types such as ARRAY, STRUCT and ENUM,

 Derived data types that are formed from the groups mentioned above.

As a user, you can define your own specific data types of the "composite" or "derived"
category.

Note

For more information, please refer to "Data types, Page 278".

7.5.1 Define Data Type

 Click on the "Data Types" button.

The folder is displayed in the navigation area as a tree.

The following folders are created for the non-elementary data types in a global library
and also under each project of the workgroup:

 Direct derived types
Standard data type with a fixed default value

 Sub-range types
Standard data type with a fixed default value and limited range of values

 String derived types
String data type with a fixed length and default text.

 Enum types
Enumerations: Names are defined instead of integer values

 Array types
Array of elementary data types with a fixed dimension and depth.

 Struct types
Structure consisting of elementary data types

 Manual ibaLogic-V4

140 Issue 4.2.4

figure 79: Data Types

The "Array types" and "Struct types" contain data types that have already been
predefined by
ibaLogic.
These are:

 CNV_BOOL_ARR / CNV_DWORD_ARR / CNV_UDINT_ARR
Single-dimensional arrays with 58 elements. These are required when importing
former ibaLogic V3 projects.

 FOBFBUF_BOOL / _INT / _DINT / _REAL
Single-dimensional arrays with 256 elements, usage in "Buffered Mode". For more
information, please see section "Buffered Mode, Page 192".

 ICPBUF_BOOL / _INT / _REAL
Single-dimensional arrays with 1,024 elements, used for connecting analog inputs
in the PADU-S-IT platform.
For more information, please see "ibaPADU-S-IT Platform, Page 204".

 DFW_MODULE_HDR / DFW_MODULE_SIGNAL_DEF
Structure for transferring data to the DAT_FILE_WRITE block.

 SSTSTATUSSTRUCT
Structure for coupling the diagnostics information to the Profibus master card SST.

ibaLogic-V4 Manual

Issue 4.2.4 141

Note

You can suppress the display of the data types that are predefined and generated
automatically if you select the "Tools – Options – General – System" menu and enable
the "Suppress Generated Data Types" option.

You can use the data types in the program even if the display is suppressed.

Procedure

You can define a data type in different ways:

 Under the project

 In the global library

 During the creation of a function block

7.5.1.1 Under the project

1. Click in the function tree with the right mouse button on the desired
category under the project.

2. Select "New" in the context menu.

7.5.1.2 In the global library

1. Click on the function tree with the right mouse button in the global library on the
desired category.

2. Select "New" in the context menu.

7.5.1.3 When creating a Function Block

The option of creating a new data type is provided in the selection box for the data type
of a variable.

figure 80: Creating a data type for a block

Procedure

1. Create a variable with the appropriate data type.

2. Test the data type created to ensure that it is error-free. If the test was successful,
confirm the entry with <OK>.

Result

If the syntax is error-free, the data type is created under the category selected.

 Manual ibaLogic-V4

142 Issue 4.2.4

7.5.2 Modify Data Type

Note

A data type that is already in use cannot be modified.

When you exit the dialog with <OK> or <Accept>, your attention is drawn to the fact
that you can create a copy under a different name.

Procedure

1. Click with the right mouse button on the data type.

2. Select "Properties" in the context menu.

3. Modify the parameters.

7.5.3 Delete Data Type

Requirement

You are not using the data type to be deleted.

Procedure

1. Click with the right mouse button on the data type.

2. Select "Remove" in the context menu or press
the function key.

7.5.4 Manage Data Type

Copy to the global library

If you need to use a data type, which is defined in one project, in another workspace
also, the data type must be copied to the global library.

Note

If you use data types from the global library, they are automatically copied to the
project.
If you use a data type from another project, this has to be copied to the global library
first.

ibaLogic-V4 Manual

Issue 4.2.4 143

Procedure

1. Click with the right mouse button on the data type under the project.

2. Select "Copy To Global Library" in the context menu.

Note

If you copied an array to the global library and then change the original, you have two
arrays with the same name, however, with different contents.
When selecting in the FB, [GLB] is put in front of the array from the global library.

7.5.5 Export Data Type

If a data type, which is defined in another database under the global library or in a
project, also needs to be used in another database or in another programming tool, the
data type must be exported as a text file.

Procedure

1. Click with the right mouse button on the data type.

2. Select "Export to ST" in the context menu.

The "Export" dialog box is displayed.

3. Specify the target folder and file name.

 Manual ibaLogic-V4

144 Issue 4.2.4

7.5.6 Import Data Type

Requirement

ibaLogic is not in the online mode.

Procedure

 Click on the "File – Import – Structured Text" menu.

7.5.7 Use Data Type

After a data type has been defined you can use it:

 during the creation of a function block

 during the creation of a structure and/or array data type

 when creating inputs and outputs

7.5.7.1 During the Creation of a Function Block

 Select the user-defined data type under the
"Data Type" column while creating a variable in the block editor.

7.5.7.2 During the Creation of a Structure Data Type

 Select a user-defined data type in the "Data Type" selection box while creating the
structure elements in the data type editor.

Note

You cannot directly access data types which you defined in a project of another
workspace.
For doing so, use the Export/Import function or the global library.

7.5.8 User-defined Data Types

Procedure

 Click with the right mouse button on a data type group.

The "Edit data types" dialog box is displayed.

ibaLogic-V4 Manual

Issue 4.2.4 145

For all data types, this dialog box consists of:

 "General" section (identical for all data types)

 "Type Properties" section

 "Elements" section

General

 Name:
Name for the user-defined data type. The data type is then available under this
name in the selection boxes.

 Description:
Any text for the description of this type. The description can be seen only here in
the definition.

Type properties

 Type:
Defines the data type.

 Default value:
Initial value (Preset value)

7.5.8.1 DIRECT DERIVED TYPE Group

This is to define an elementary data type for which a new name and a default value can
be specified.

With this, for example, constants such as the number "Pi" can be defined with the
LREAL data type.

7.5.8.2 SUBRANGE TYPE Group

This is an integer data type with a limited range of values and a default value.

You can use it, for example, to define indices for arrays having a specific depth.

Important Note

This data type is not limited. There is merely an error message at runtime in case the
range is exceeded.
This data type is only checked in case of direct assignments during compilation, there
is no runtime checking as to whether the range is exceeded.

7.5.8.3 STRING DERIVED TYPE Group

This is a string data type having a limited length.

You can use it to define text strings having a fixed initial value, for example, for error
messages.

Note

The maximum length of a string is 250 characters.

 Manual ibaLogic-V4

146 Issue 4.2.4

7.5.8.4 ENUM TYPE Group

A data type of the category ENUM TYPE is an enumerator.

The data type is used to designate the values of a variable symbolically, e. g. the
position of a switch.

Example: Data type "Switch"

You would like to create a data type "Switch", which has the 3 positions, FORWARD,
STOP and BACK.

To do this, you need to define the ENUM TYPE Switch, with number 3 and the switch
positions as enumerators.

figure 81: "Edit data types" dialog box

Please note that you access the individual enumerator values using "Enumerator" in
"Structured Text".

ibaLogic-V4 Manual

Issue 4.2.4 147

Assign and retrieve values:

figure 82: Variables Editor 1

figure 83: Variables Editor 2

Note

Please note that you cannot assign integer values to the enumerators.

Exception:
An OPC connector is declared as type Enum and read or written externally. In this
case, the OPC Client writes or reads the enumerator number as an integer.

 Manual ibaLogic-V4

148 Issue 4.2.4

7.5.8.5 ARRAY TYPE Group

Arrays are single-dimensional or multi-dimensional fields. All elements of an array have
the same data type. However, this is not restricted to the elementary data types, but
you can also form arrays of user-defined data types, structures, strings or arrays.

Example: 2-dimensional integer array

Parameter Explanation

Type Base type of the array elements

Number Number of dimensions

Default value Default values of the array

Examples
1-dim-Array: [1.0,2.0,3.0]
2-dim-Array: [[1.0,2.0,3.0],[4.0,5.0,6.0]]

Lower / Upper limit The value range of the element index determines the depth of
the individual dimensions. Maximum value: 0 to 32,766

Access to the elements of an array in Structured Text:

i1 is a variable of array type. o1, o2... are variables of element type;

 1-dim- Array: o1 := i1[0];

 2-dim- Array: o1 := i1[0.0]; (* 1st element of the 1st dim *)

 o2 := i1[0,1]; (* 2nd element of the 1st dim *)

 array_of_array: o1 := i1[0][0]; (* 1st elem. of the 1st array *)

 o2 := i1[0][1]; (* 2nd elem. of the 1st array *)

 o3 := i1[1][0]; (* 1st element of the 2nd array *)

 array_of_struct: o1 := i1[0]; (* 1st structure of the array *)

 o2 :=
i1[0].elem;

(* elem. of the 1st structure *)

Note on Structured Text

The indices of arrays can be only variables having "Int" data type. In contrast to
ibaLogic V3, no expressions such as [ix+4] are allowed.

ibaLogic-V4 Manual

Issue 4.2.4 149

7.5.8.6 STRUCT TYPE Group

In contrast to arrays, you can group variables having different data types under a
structure. You have to define the elements separately, and while doing so, you can use
all data types defined so far, including the user-defined data types and arrays.

You can define a name, description and default value for each element of the structure.

Example: Pump

You need a "Pump" data type for the pump "Type E7F99" with the properties
"temperature", "speed", "state" and "error".

For this purpose, you define the "Pump" data type with the description "Pump Type
E7F99" and the number 4. "Elements" defines the associated properties.

figure 84: "Edit data types" dialog box

Parameter Explanation

Type Base type (even user-defined data types are allowed).

Name Name of the element.

Description Personal explanation of the data type.

you select the
settings

Initialization to a default value (Preset).

 Manual ibaLogic-V4

150 Issue 4.2.4

Access to the elements of the structure in Structured Text:

1 (*o1 is a variable of structure type pump, i1, i2... are
variables of element type; *)

2
3
4 o1.Temperature := i1;; (* of INT data type *)
5 o1.Speed := i2; (* of REAL data type *)
6
7 (*v1 is a variable of Pump structure type;*)
8
9 if (v1.Temperature > 80) then
10 v1.Status:= 99;
11 v1.Error:= 'Temp. too high';
12 else
13 v1.Status:= 0;
14 v1.Error := 'No error';
15 end_if;

figure 85: Structure in Structured Text

ibaLogic-V4 Manual

Issue 4.2.4 151

8 Program Elements

A graphical ibaLogic program contains the following elements:

 Blocks

 Inputs and Outputs

 Links (Connections)

 Converters, splitters or joiners added automatically

 Comments

8.1 Create Program Element

You can create all elements that a graphical ibaLogic program can contain.

Procedure

1. Open the context menu by clicking with the right mouse button on a free area in the
programming field.

2. Select "New..." in the context menu.

3. Select the desired program element.

8.2 Mark Program Elements

You can mark individual or multiple program elements in the following manner.

Procedure

1. Select the desired element by clicking with the left mouse button (single selection).

2. Select the desired elements by clicking with the left mouse button and pressing the
<Shift> or <Ctrl> simultaneously (multiple selection).

3. Drag a rectangle (Lasso) over one or more elements to be selected by clicking on
the left mouse button.
I doing so, existing connection lines and converters, if any, between the blocks are
also marked.

4. Select all elements by pressing the <Ctrl> + <A> keys.

 Manual ibaLogic-V4

152 Issue 4.2.4

Result

The elements marked are displayed with green, blue or gray dots.

When you mark several elements, one element is always green. This is the reference
point of the grouping.

One element is marked.

One element is marked, but the focus lies on another
element.

Many elements are marked.

The element marked green is always the main element of
the group marked.

figure 86: Selected element

8.3 Move Program Element

You can move the blocks (and connections) already marked by keeping the left mouse
button pressed.

Procedure

 Move one or more elements selected by keeping the left mouse button pressed.

Remarks

This applies to lines with limitations.

8.4 Align Program Elements along an Edge

All program elements can be aligned along an edge. You can use this for obtaining a
clear block layout.

Procedure

1. Mark the elements to be aligned (Blocks, Intra-page connectors and Off-task
connectors).

2. Select the desired function the "Function Diagram - Align".

Remarks

This is not applicable to inputs / outputs and lines.

ibaLogic-V4 Manual

Issue 4.2.4 153

8.5 Copy Program Element

You can copy individual or multiple program elements.

Procedure

1. Mark the elements to be copied (Blocks, Intra-page connectors and Off-task
connectors).

2. Press the key combination <Ctrl> + <C> to copy the elements selected to the
clipboard.

3. Press the key combination <Ctrl> + <V> to copy the elements from the clipboard
into the programming field.

Tip

Instead of the key combination, you can also select "Copy" and "Add" in the context
menu.

If you have selected multiple blocks, the connecting lines between these blocks also
get copied.

This is not applicable to inputs and outputs and lines marked individually.

8.6 Delete Program Element

You can remove individual or multiple program elements.

Procedure

1. Mark the elements to be deleted (Blocks, Intra-page connectors and Off-task
connectors).

2. Press the key.

Remarks

Instead of the key, you can also select "Remove" in the context menu.

8.7 Generate Input / Output Variables

Prerequisite

You have selected the "Inputs - Outputs" button.

Procedure

 Drag an input or output variable at any position in the left or right input or output
border.

Note

In a program, an input and output can be created only once.
In a project, an input can be used several times. An output can be used only once.

 Manual ibaLogic-V4

154 Issue 4.2.4

8.8 Graphical Connections

In graphical programming, a graphical connection is used to transfer the results of one
function to another.

There are 3 different forms for this:

 Direct connectors

 Intra-page connectors

 Off-task connectors

8.8.1 Direct Connectors

8.8.1.1 Types of connection lines

ibaLogic uses line types of different colors that represent different groups of data types.

Line type Explanation

 Binary connectors are displayed according to their status,
red (TRUE) or blue (FALSE).

 Arrays are displayed using green lines. Only arrays
having identical length and data type can be connected
with one another.

 Structures are displayed in orange color.

 Enum types are displayed in yellow color.

 All other elementary data types are marked with black
connectors (e.g. INT, REAL...)

8.8.1.2 Create Direct Connector

Procedure

1. Click with the mouse on the output connector of a block.

2. Keep the left mouse button pressed and drag a connector to the input connector of
a block.

Remark

If the result of one block is used in multiple blocks, generate a branch by dragging a
line from one input connector to another existing one.

Near a connectable connector or connectable line, the mouse cursor jumps to the
connector or the connecting line (Magnetic effect).

ibaLogic-V4 Manual

Issue 4.2.4 155

8.8.1.3 Modify Direct Connectors

Procedure

1. Mark the connector that you wish to modify.

The marking is displayed by small green squares and diamonds.

2. Modify the line by moving the green squares with the mouse.

3. Click with the mouse on the green diamond on the connecting line in order to wire
the line connection.

4. Drag the end to a blank area, which deletes the connecting line.

5. Drag the end to another connector. The connecting line is reconnected.

Note

Connecting lines that you have arranged manually are re-evaluated by the auto-router
when the associated block is moved. Your modifications are rejected as a result.

8.8.2 Intra-Page Connectors

An intra-page connector (IPC) merely represents a drawing simplification. In the
process, the IPC replaces a connecting line.

This is recommended when several objects on one page need to be connected or
"long" connections are required across multiple pages. The IPC is not a programming
object, but merely acts as a line substitute.

The IPC can - be used as direct connectors - only within a program or macro level. You
cannot have connections from a macro to the call level. You must define inputs and
outputs in the macro block for this purpose.

8.8.2.1 Create Intra-Page Connectors

Create Intra-Page connectors as line substitutes.

Prerequisite

You can generate an IPC at an input connector only if an "IPC Source" has been
defined earlier.

Procedure

 Press the <Ctrl> button and simultaneously drag a connecting line from one output
connector to a free location in the programming field.

 Manual ibaLogic-V4

156 Issue 4.2.4

 Menu procedure similar to creating off-task connectors. However, major
modification.

 Create IPC source

 Connect IPC (as described here)

 Connect IPC via menu

Remark

To connect an IPC to an input, follow the same procedure.
Hold down the <Ctrl> key and drag the line from an input connector to a free area in
the program field. Subsequently, the "Existing IPCs" dialog opens. Select the
corresponding IPC and quit the dialog by clicking <OK>.

figure 87: Properties window

8.8.2.2 Modify IPC Names

ibaLogic creates a name automatically, consisting of
"Block instance name.connector name". This name can be changed.

Procedure

1. Double click on the IPC source.
The "Edit IPC " dialog box is displayed.

2. Assign a name and a comment to the IPC source. Assign meaningful names.

Result

The modification is accepted automatically in all "IPC Targets" connected. "IPC Targets"
cannot be directly modified.

8.8.2.3 Track IPC

Load the corresponding program page of the IPC selected.

Procedure

1. Click with the right mouse button on an IPC.

ibaLogic-V4 Manual

Issue 4.2.4 157

2. Select "Go To ->" in the context menu.
You can then see the generator (output connected and all consumers (inputs)
connected.

3. Click on any connection displayed.

Result

The appropriate program page is loaded and the IPC is marked.

Context menu Explanation

01. -> Generator_1.OUT Generator

02.°Generator_1.OUT -> Marked IPC

03. Generator_1.OUT -> Consumer

figure 88: Track IPCs

8.8.3 Off-Task Connectors

Off-task connectors (OTC) are used as program-independent connecting elements are
always required when there is communication between programs.

In addition, OTCs can be set as read-enabled and write-enabled for OPC Clients.

8.8.3.1 Create Off-Task Connectors

Procedure

1. Position the mouse pointer at a free location in the programming field.

2. Open the context menu by clicking on the right mouse button.

3. Select "New… - New Off-Task Connector".
The "Edit Off-task connector" dialog box is displayed.

 Manual ibaLogic-V4

158 Issue 4.2.4

4. Assign the parameters required.

Note

The OTC name must conform to the IEC naming convention.
See "Naming conventions, Page 277".

Establish a program-independent connection

Procedure

Method 1:

1. First generate the output OTC (Source) by filling up the dialog box.

2. Copy the output OTC.

3. Add the output OTC in the target program.
By doing so, the parameters are accepted but the direction is reversed.

Method 2:

1. Create an OTC in the target program.

2. Select the name of the associated output OTC from the selection box.
In doing so the other parameters get accepted.

3. You must set the direction to "Input".

OPC Properties
You can specify the following OPC properties to the OPC.

Selection boxes
OPC Properties

Explanation

OPC visible Specifies whether this connector is visible in the OPC name space.

OPC write-enabled Specifies whether an OPC Client should write to this connector.

Further information, please refer to "Setting the OPC Variable Parameters, Page 208".

ibaLogic-V4 Manual

Issue 4.2.4 159

Rules for creating OTCs
 An output OTC must be unique in the project.

 Multiple input OTCs can be created for an output OTC. You can do this even within
a program, but not in the program in which the output OTC is placed.

 An input OTC can have only one data source, either OPC enabled or an associated
output OTC.

 If you create an output OTC with the name of the input OTC, this input OTC is no
longer write-enabled for the OPC.

 An input OTC that does not have any data source can be used as a constant /
parameter.

8.8.3.2 Rename OTC

Procedure

1. Select the OTC that is to be renamed.

2. Open the OTC properties by means of the context menu or by double-clicking on
OTC.

3. Change the name of the OTC and leave the properties dialog by clicking <OK>
If the OTC already has connected targets, the "Existing OTCs" dialog box is
displayed.
In this screen, it can be determined whether all or individual connected OTCs are to
be renamed. In this manner, for example, you can assign the right name to an OTC
having an incorrect name by correcting the name.

After quitting the dialog by clicking <OK>, all selected OTCs are renamed.

Remark

If a target is present several times in a program, the number can be seen from the
COUNT column.

 Manual ibaLogic-V4

160 Issue 4.2.4

8.8.3.3 Track OTCs

Procedure

1. Click with the right mouse button on an OTC.

2. Select "Go To ->" in the context menu.
You can then see the programs in which the OTC is generated and used.

3. Click on any connection displayed.

Result

The appropriate program page is loaded and the OTC is marked.

Context menu Explanation

01. -> OTC_Temperature: Prog1 Generator

02. OTC_Temperature -> : Prog3 Consumer

figure 89: Track OTCs

ibaLogic-V4 Manual

Issue 4.2.4 161

8.8.3.4 List of all OTCs

Display of all defined OTCs in the project.

Procedure

1. Position the mouse pointer at a free location in the programming field.

2. Open the context menu.

3. Select "Display Off-Task Connectors".
The dialog box that contains the list of all OTCs defined and sorted in alphabetical
order is displayed.
Navigate within the list by entering the starting alphabet or by double clicking on an
OTC.
This displays a list of all OTCs defined in the project.

Remark

You can also call this function via the
"Function diagram - Display Off-Task Connectors" menu option or the key combination
<Ctrl>+<Shift>+<S>.

Note

You can leave the dialog box open and continue working with the program. The list is
updated automatically when OTCs are created or removed. The dialog box can be
positioned wherever desired and can also be docked to the border of the programming
window.

8.8.3.5 Display

The various properties are identified in color for better orientation:

Display of the OPCs Description

Displays inputs and outputs that are connected

Displays inputs and outputs that are visible to the
OPC, write-enabled and read-enabled

Displays an input that is read-enabled and write-
enabled for the OPC

Displays inputs and outputs that are not connected

 Manual ibaLogic-V4

162 Issue 4.2.4

8.9 Converters, splitters, joiners

8.9.1 Converter

Automatic Addition of the Data Type Conversion

In conventional CFC editors you can connect interfaces that are not of the same data
type. ibaLogic adds a converter automatically if a meaningful conversion is possible.

Note

To use detailed converters directly displaying the conversion, disable the "Iconic
Display of the Converter" function in the options.

see: "Tools" - "Options" - [Editors] - [Diagram]

This automatic converter is displayed with reduced size in order to save space in the
programming field.
When you go over it with the mouse pointer, it displays the conversion hidden below it
as a tooltip.

figure 90: Data type conversion

Note

Blocks having non-typed connections get a data type only when a connector is put in
place. This data type is then accepted for all connections and remains when you
remove the last connection again.

If you wish to connect two non-typed connections a dialog box opens in which you can
select a permissible data type.

ibaLogic-V4 Manual

Issue 4.2.4 163

8.9.2 Splitter

You would like to remove elements from a data structure for other evaluations. Using
conventional methods, you have to create a user-defined block in which you use
structured text to assign the structure of the output connectors to individual elements.
IbaLogic automatically creates this block, known as splitter, for you.

Procedure

1. Drag a connecting line between one block input connector to a structure output
connector of a block or an OTC input.
A selection box pops up.

2. Select a structure element.

Remarks

In this manner, you can access other structure elements.

figure 91: Splitter

8.9.3 Joiner

If you try to connect an output connector with the input connector of a structure,
ibaLogic provides a menu where you can select one of the structure elements. Based
on this, ibaLogic adds a joiner block to whose inputs you can connect other signals.

figure 92: Joiner

 Manual ibaLogic-V4

164 Issue 4.2.4

8.10 Comments

Comments are graphical elements that you can add at any free location in the
programming field. You can cover connectors. These are visible through the
transparent comments field.

The comments field has a pointer that can be docked to the function to be described.

Procedure

1. Position the mouse pointer at a free location in the programming field.

2. Open the context menu.

3. Select "New… - New Comment".

ibaLogic-V4 Manual

Issue 4.2.4 165

9 PMAC Runtime System

9.1 Overview of Online and Offline Modes

The following menus or icons are available in the menu for operating the runtime
system:

 Start (Menu "Evaluation" and button in the toolbar)

 Stop (Menu "Evaluation" and button in the toolbar)

 Store project on target ("Evaluation" menu)

 Delete stored project from target ("Evaluation" menu)

 Disconnect (Button in the toolbar)

 Update (Button in the toolbar)

9.2 Start Runtime System

In contrast to conventional automation systems, the steps of "Compilation" and
"Loading" take place automatically in the background.

Procedure

1. Click on the <Start> button in the toolbar.

2. Confirm the "Start Evaluation..." dialog with "Yes".

Note

This request can be disabled in the ibaLogic options to start the evaluation in the
development and test environment by pressing the <Start> button or F5.

To disable the query, open the options with "Tools"->"Options" and enable the
"Program: Start evaluation" option under [General]->[Messages]->[Confirmations].

Result

The following actions are performed:

 The project is compiled.

 The project is transferred to the PMAC.

 Program execution commences.

 The evaluation time is displayed in the program window toolbar.

 All value pads are displayed.

 Manual ibaLogic-V4

166 Issue 4.2.4

 The value pads in the visible region are provided with current values.

 The background color of the programming field in the client changes to pink.

 The program is now in online mode.

figure 93: Online mode

Errors during compilation, loading, etc. are displayed in the event window. By default,
this is located below the programming field. It can, however, be concealed or placed at
any position desired and docked there.

Tip

A special highlight of ibaLogic is the fact that you can (almost) carry out the entire
programming in the online mode.

Exceptions:

 Configuring the platform

 Configuring the I/Os

 Importing programs / blocks / data types

 Configuring the DAT_FILE_WRITE block

Another feature:

You can end the client in the online mode without stopping the PMAC. When you
restart the client, it connects with the PMAC immediately in the online mode.

This is particularly useful when the PMAC is running on another platform (another PC
or PADU-S-IT). You can then shut down the ibaLogic computer and, in fact, remove it,
while the PMAC continues to run. After rebooting and starting the server and client, the
client reconnects automatically with the PMAC running in the online mode.

9.3 Stop the Runtime system

Procedure

1. Click on the <Stop> button in the toolbar.

2. Confirm the "Stop Evaluation..." dialog with "Yes".

ibaLogic-V4 Manual

Issue 4.2.4 167

Note

This request can be disabled in the ibaLogic options to stop the evaluation in the
development and test environment by pressing the <Stop> button or <Shift>+<F5>.

To disable the request, open the options with "Tools"->"Options" and enable the
"Program: Stop evaluation" option under [General]->[Messages]->[Confirmations].

Result

The following actions are performed with <Stop>:

 Program execution (PMAC) terminates.

 The background color of the programming field in the client changes to gray.

 The value pads are concealed.

 The program is now in the offline mode.

figure 94: Offline mode

9.4 Runtime System – Autostart

9.4.1 Save program on the PMAC

If you wish to start the platform with an executable program, this program must first be
saved in the PMAC.

Prerequisite

 ibaLogic is in the online mode.

 Autostart is enabled.

Procedure

 Select "Evaluation – Store Project on Target" in the main menu.

Result

The project is saved on the target. A file is generated physically. The PMAC will find this
file on the platform on startup and execute it.

For more information, please see "Activate Autostart Server, Page 47"

 Manual ibaLogic-V4

168 Issue 4.2.4

Note

Please note that any subsequent program modification must be saved explicitly in the
PMAC.

In order to prevent automatic startup of the PMAC, you can first delete the platform
memory or modify the autostart options.

9.4.2 Delete Program on the PMAC

This deletes the image file generated earlier physically with the command "Store
Project on Target".

Procedure

 Select "Evaluation - Delete stored project from target" in the main menu.

Result

The PMAC memory, i. e. the image file created is deleted.

ibaLogic-V4 Manual

Issue 4.2.4 169

9.5 Connect/disconnect

Disconnect is used when - you have several program modifications to be made one
after another - without stopping the program or compiling the steps one by one.

Example

You would like to expand a structure data type that is used many times in the program.

Risk of effective SWITCH/SLIDER in the Disconnect state!

Any SWITCH /SLIDER existing at the time of Disconnect continue to be active on the
running PMAC in order to have an influence on the system despite this. This behavior
permits operations on the running PMAC despite DISCONNECT.

If any of these SWITCHES or SLIDERS is removed and added again with the same
name, this becomes effective again immediately on the running PMAC.

If you delete an FB or MB in the Disconnect state and add it again with the same
name, identical inputs and outputs can be visualized again immediately. The values
relate to the block running currently in the PMAC and not to the block that has been
created afresh. The block that has been created afresh can, for example, have totally
different contents. The new layout is accepted only after compiling and loading the
program.

Procedure

 Click on button <Disconnect> in the toolbar.

The following actions are performed thereafter:

 Program execution (PMAC) is not terminated, but instead, continues unaffected.

 The background color of the programming window in the client changes to green.

 The value pads continue to be displayed and updated.

 The <Disconnect> button is changed to <Connect>.

 The <Update> button is enabled.

 You can now replace the old type one by one with the new one in all blocks and
OTCs in which this data type is used. The modifications, as you do this, are neither
compiled nor loaded in the PMAC.

 Manual ibaLogic-V4

170 Issue 4.2.4

 After completing your modifications, you can now specifically compile and load
them in the PMAC. You can do this either in one shot (complete update) or in
separate steps. Select <Update> in the toolbar.

In doing so, you do not quit the Disconnect mode.

 You can exit the Disconnect mode by clicking on <Connect>.

Result

As a result, all changes get compiled and are loaded in the PMAC.

ibaLogic-V4 Manual

Issue 4.2.4 171

10 Platforms

Before you start configuring the interfaces to the peripherals or to other systems, you
have to have to set up the base hardware on which the ibaLogic runtime system
(PMAC) needs to run.

At present, there are two device classes available for the platform:

WinXP

The PMAC runs on a Windows PC on which the other ibaLogic components are
running.
For more information, please refer to "Operating and Processing Modes, Page 31".

The link to decentralized peripherals and to other systems is established using PCI
cards here.

figure 95: Peripheral interface Windows PC

PADU-S-IT

The PMAC runs on an ibaPADU-S-IT station. All other ibaLogic components are always
located on one or multiple Windows PCs.

Only the local I/O components (peripheral modules) are available to the PMAC on the
ibaPADU-S-IT. There is a bi-directional FO connections and a network connection for
TCP/IP coupling available for decentralized peripherals and external systems.

figure 96: Peripheral interface of the PADU-S-IT

 Manual ibaLogic-V4

172 Issue 4.2.4

After calling the ibaLogic-V4 Client for the first time, the local Windows PC, that is,
device class "WinXP" is preset as the platform.

10.1 Configuring the Platform

The dialog box for configuring the platform is available under "Tools" in the menu bar of
the Client's ibaLogic.

Note

The platforms are created specifically for each project. All projects of the workspace
and the platforms configured in them are available in the "Platform
Configuration" dialog box.

Prerequisite

You have opened a project.

Procedure

 Select "Tools - Platform Configuration" in the menu.

Alternatively:
open the list next to "Current Platform" in the toolbar and select <Add Platform> or
<Edit Platform>.

ibaLogic-V4 Manual

Issue 4.2.4 173

 Click in the dialog box under the project name on <Add Platform> or on the
appropriate platform in order to create a platform or to configure it.

Color Explanation

Green Is the active system.

Light gray Creation of a new platform.

Black Other platforms available.

 Click on the <Edit> button. The "Edit Platform Configuration" dialog box is
displayed.

 Enter a device name or accept the settings specified.
Within the workspace, the name must be unique.

 Select the device class WinXP or PADU-S-IT.

 Enter the host IP.

 If you have selected the WinXP device class, enter "localhost" or "127.0.0.1"
when the PMAC runs on the computer or on the server.

 If the PMAC is located on another computer within the network, enter the host
name or the IP address of this computer.

 If you have set PADU-S-IT as the device class, enter the host name or the IP
address of the ibaPADU-S-IT device on which the PMAC should run.

 Confirm your inputs by clicking on the <OK> button.

 Exit the dialog box with <Close>.

 Manual ibaLogic-V4

174 Issue 4.2.4

10.2 Selecting the Platform

The platform set currently is displayed in the toolbar of the ibaLogic-V4 Client. You can
use the selection box to switch to another platform.

Important Note

Please note that the platform is always set for the active project and not for the project
being edited.

Procedure

1. Click on the selection box to switch the platform.

2. Select one of the platforms already configured.

Important Note

Please note that the I/O configuration depends on the platform.

After setting up the platform, you have to update the I/O configuration.

Select the "Tools – I/O Configurator" button <Update Hardware >.

ibaLogic-V4 Manual

Issue 4.2.4 175

11 IO Configuration

The IO Configurator is the centralized dialog in which you can make all configuration
settings relating to the input and output signals as well as certain interfaces.

Note

Exceptions are all those interfaces that are available as function blocks, e. g.
TCPIP_SENDRECV block or the in-built OPC interface.

 Open the IO Configurator using the "Tools - IO Configurator".

The IO Configurator dialog screen is divided into 3 sections:

 Input / output resources available

 Hardware-Configuration

 Signal assignment

Input / output resources available

All hardware and software interfaces detected and supported by the system are
displayed in a tree structure on the left side of the dialog screen.

Hardware-Configuration

This is where you can configure special settings for the entire system and for individual
cards.

Assign signals

You can work with self-defined and meaningful input and output names in ibaLogic
(virtual inputs and outputs). These virtual signals are assigned with the help of signal
assignment to the physical inputs and outputs. The virtual signals are divided in groups.

 Manual ibaLogic-V4

176 Issue 4.2.4

11.1 Resources

The I/O configurator accepts the I/O configuration associated with the active project
when it is opened.

Note

The I/O configuration is not saved in the database, but instead, in two XML files in the
path, "…\ibaLogic v4\Server\HwMappings". Hence, it is possible to edit the project
regardless of the hardware available.

The I/O configuration files are saved during database backup in ZIP files and are
reloaded when the database is restored so that after transporting the projects, even
the original I/O configuration is available.

When saving the database backup in BAK files, the I/O configuration is not saved.

<Update Hardware> button:

By clicking on the <Update Hardware> button, the hardware that is available to the
computer on which the PMAC is running is accepted. This includes the PCI cards
supported on the Windows PC platform (see "Hardware Resources, Page 177"). For
the ibaPADU-S-IT platform, these are the peripheral modules available there.

Important Note

The platform must be configured prior to editing the I/O configuration, since the
settings of the I/O configurator are lost when you switch the platform!

Note

The number of I/O signals permissible depends on the license purchased (Dongle).

ibaLogic-V4 Manual

Issue 4.2.4 177

Tree structure

Prerequisite

 You have activated the corresponding link in the hardware configuration and
accepted the configuration using the <Accept> button at the lower border of the
dialog box.

Procedure

 You can open the tree structure right up to each individual signal by clicking on the
+/- character in front of the names.

The following hierarchy levels are displayed:

Interface  module  inputs/outputs  signals

Interface: Name and index for the card types

Modules: Group according to the physical division,
depending on the type of card.

Inputs /
Outputs:

Module may have only inputs, only outputs or both

Signals: The names of the hardware signals are formed from the
module name, direction, data type and serial number.

figure 97: Assign signals

 Manual ibaLogic-V4

178 Issue 4.2.4

11.1.1 Hardware Resources

ibaLogic supports the following interfaces:

WinXP platform and PCI cards

Interface Cards Links
(Connections)

Protocol

FOBFnn 4 ibaFOB-io-S
ibaFOB-4i-S
ibaFOB-4o-S

1 FOC link
4 FOC links
(simplex/duplex)

ibaNet with 2 and 3
Mbit

 ibaFOB-2io-X
ibaFOB-4i-X
ibaFOB-4o-X

2 FOC links
4 FOC links
(simplex/duplex)

ibaNet with 3.3 and
32 Mbit (32 Mbit
only for receive)

FOBDii ibaFOB-2io-D
ibaFOB-4io-D
ibaFOB-4o-D

2 FOC links
4 FOC links
(simplex/duplex)

ibaNet with 2, 3.3
and 32 Mbit and
DMA

FOBSDnn ibaFOB-SD 1 FOC link
duplex (ST)

SIMADYN D

FOBTDCnn ibaFOB-TDC 1 FOC link
duplex (SC)

SIMATIC TDC

L2Bnn ibaCOM-L2B 4/8
ibaCOM-L2B 8/8

4 slaves
8 slaves

Profibus DP Slaves

SST_Masternn SST-PCB3 max. 125 slaves Profibus DP Master

RFMnn VMIC-5565
VMIC-5575

1 duplex FOC
1 coaxial

Reflective Memory

figure 98: WinXP platform

nn = Card numbering 00 to 03 (max. 4 cards of one type are allowed)

ii = Card numbering 00 to 07 (max. 8 cards of type FOB-D are allowed).

PADU-S-IT platform

Interface Peripherals

PADU-S-IT Local peripherals, i. e. the interface modules on the PADU-S
module rack or frame. Please refer to the PADU-S modules for
this purpose.

Other Documentation - PADU-S-IT platform

Please look up the ibaPADU-S-IT manual for information on this.

4 Cards for this interface are available only for old systems.

ibaLogic-V4 Manual

Issue 4.2.4 179

11.1.2 Software Resources

ibaLogic supports the following protocols that are based on Ethernet:

Display Protocol

TCPIP_OUT TCP/IP protocol ibaLogic to PDA:

WinXP class:
max. 16 telegrams for every 32 real values and 32 binary values

PADU-S-IT class:
max. 16 telegrams for every 32 real values and 32 binary values

Note

Only outputs are available.

11.1.3 Global System Variables

The following global system variables are provided:

Interface Variables

GLOBALVAR Global input variables:

 LAST_DRIVER_ERROR
Last error occurred on the driver displayed as hex code.

 WATCHDOG_BITE
FALSE by default. If this value becomes TRUE, the configured
watchdog of ibaLogic has responded and switched off the outputs of
the cards.
For more information on "Watchdog", please refer to "General
Settings, Page 180".

 SYSTEM_UTC_TIME
Current system time in UTC format (UniversalTimeCoordinated).

 DONGLE_NUMBER
Dongle number of the iba dongle plugged in on the PC or the serial
number of the PADU-S-IT.

 ACQ_RESTART_COUNT
Counter for internal driver restart. This is used to detect system
overloads in the "Buffered Mode"

 Manual ibaLogic-V4

180 Issue 4.2.4

11.2 Hardware Configuration

The hardware configuration dialog screen is called via the "Hardware Configuration"
tab.

There are 3 sections available in the hardware configuration in which you can configure
the following settings.

 General Settings for ibaLogic

 Card Settings

 Link (Connection) Settings

Note

You can make modifications only if the evaluation has not yet been started (Gray
background in the design area).

11.2.1 General Settings

The general settings are applicable to the ibaLogic runtime system and to all interface
cards.

figure 99: General Settings

Interrupt source

The iba modules available are displayed in this list field or selection list. Select any
module from this list that should work as the interrupt source with respect to the PCI
bus.

If there is no I/O card in the system, ibaLogic clock uses a clock and the field is empty.

Only PADU-S-IT is provided as an option under the PADU-S-IT platform.

Time base

The time base is the smallest cycle time that can be used. Please note that the
configurable task intervals cannot be less than this time base.

Activate Turbo Mode

The turbo mode can be activated if a multiprocessor PC is being used. The spare
performance capacity of the system can be enhanced considerably with this, since one
of the processors is responsible exclusively for the execution of the PMAC and the
other one handles the customary Windows management. This should be used
particularly for control and regulation functions (Software PLC).
Detailed description see "Time behavior, Page 230".

ibaLogic-V4 Manual

Issue 4.2.4 181

Soft PLC

This mode is suitable for control and regulation functions. This ensures in ibaLogic that
only the latest signal states are processed. In contrast to the measurement mode, it is
not decisive if samples are lost. Current data from the latest I/O transfer cycle are used
for the evaluations.

Detailed description see "Time behavior, Page 230".

Measurement

This mode ensures that ibaLogic does not lose any input sample. This is also true
when individual tasks within ibaLogic need to be superseded. The runtime system of
ibaLogic ensures that the data are made available equidistantly in the task interval
configured. If tasks get superseded, the system makes up for the cycles.

Detailed description see "Time behavior, Page 230".

Activate Watchdog

When this function is activated, a timer is started up in the cards available, and this
timer is triggered by ibaLogic when there is a write operation at the outputs. If there is
no write command (= trigger) from ibaLogic within the time configured, the card
automatically sets all outputs to 0.

Since ibaLogic writes to the outputs cyclically, any trigger of the watchdog points to an
application that has paused or is overloaded (e.g. b programmed endless loop).

Force Driver Restart

This function is particularly important for SST cards and reflective memory cards.
These cards are also reset with the driver restart and, with it, the modified external
configuration is accepted.Setting this option leads to restart with <OK>. This option is
again reset automatically.

11.2.2 Card Settings

Please mark the appropriate interface in the tree structure on the left for the settings.
Only those settings are described here that are applicable to (almost) all cards.

 Interrupt mode

This field is provided only for iba cards.

The following modes are available for selection:

 Master Mode Internal:
Master Mode Internal should be set for only one card. This uses the internal timer to
generate a synchronization signal that is distributed via a flat ribbon cable to the
other cards.

 Master Mode External:
In contrast to Master Mode Internal, the synchronization signal is not generated in
the card, but instead, derived from the cycle of the FOC telegram incoming at Link0.
This mode is meaningful only if ibaLogic needs to be synchronized with an external
cycle, e. g. with variable interrupt time in buffered mode (e. g. flatness
measurement or for bus-synchronous measurement with the Simolink monitor. For
further information, please refer to "Buffered Mode, Page 192".

 Manual ibaLogic-V4

182 Issue 4.2.4

 Slave Mode:
This mode must be set for all other cards.

Note

Select this as the interrupt master if there is a card of type FOBSD or FOBTDC in your
configuration. Otherwise, select one from the FOB-X or FOB-D type of cards. If neither
of these cards is present, you can use the FOB-S or L2B card.

 Enabled

You can use only cards that have been enabled.

A card must be deactivated if an ibaPDA Server is running on the same computer that
uses this card. A card cannot be used by ibaLogic and ibaPDA simultaneously.

Other settings are specific to each card and described in section "PCI Interfaces
(Windows PC), Page 190".

11.3 Signal assignment

In order to use the physical inputs and outputs, you must assign them to the virtual
signals in the program.

There are two methods for assigning signals:

 from the hardware signal to the program signal (seen from the hardware).

 from the program signal to the hardware signal (seen from the program).

It is also possible to use a mixed method between these two basic methods.

11.3.1 Method as seen from the hardware

At the start of programming, you already know the external interfaces, e.g. the
assignment of the FOC telegrams or that of the Profibus slaves. From these physical
signals you generate virtual signals that you can use subsequently in the program.

You can accept the names generated automatically or assign your own base names.
The direction tag, type and index are added automatically. Finally, each signal name
can be changed separately.

After acceptance, the virtual signals are visible in the navigation area under "Inputs -
 Outputs". Here, too, you can modify the signal names provided that they are not yet
used in the program, i.e. dragged from the navigation area to the borders of the design
area.

ibaLogic-V4 Manual

Issue 4.2.4 183

11.3.1.1 Example: Assignment of all signals of a module of an ibaFOB-io-S
card

The FOB card is listed, among others, on the left side.

The inputs and outputs are not yet assigned in the "Assign Signals" tab.

figure 100: Assignment of signals of the ibaFOB-io-S card

Procedure

1. Open the tree of the FOB card on the left side.
All activated links of the card and their designations are displayed.

You can assign the entire FOBF00M00 module (equivalent to link 0 on the FOB
card).

2. Drag the FOBF00M00 module and drop it on the right side on the inputs or outputs.
The "Group Properties" dialog box is displayed.

Remark

ibaLogic creates a group with the group name under the inputs and forms a virtual
name for each hardware signal. You can either leave the generation of the names
entirely to ibaLogic or specify them yourself.

 Manual ibaLogic-V4

184 Issue 4.2.4

During the generation, the composition of the current signal name is displayed. In the
example given above, the name "FOBF00M00InAna01" is composed as follows:

FOBF00M00 Base name (same as the group name)

In Direction tag

Ana Type number

01 Serial number

Depending on the direction that you have chosen in the selection box, all signals of this
module are created in the group displayed under inputs and / or outputs.

Result

The assignment leads to the following result:

The virtual signal names are displayed to the left from the arrow and the hardware
signal names to the right. The group name is identical to the physical module name.

figure 101: Assign signals

ibaLogic-V4 Manual

Issue 4.2.4 185

11.3.1.2 Example: Assignment of individual signals of an ibaFOB-4i-S or
ibaFOB-4o-S card

If you need only a few signals of a module in the program, you can assign only these
signals as required.

Procedure

Add group

1. Open the context menu by clicking the right mouse button.

2. Select the "Add Group" menu item, assign a group name and leave the "Setting the
Group Name" dialog box by clicking OK.

3. Open the signal tree until you can see the individual signals of the module you want
to use.

4. Add individual signals to the group defined earlier by drag and drop.

Result

Individual signals are assigned to the group.

 Manual ibaLogic-V4

186 Issue 4.2.4

11.3.1.3 Change Signal and Group Names

You can change the names of the virtual signals one by one after the assignment.

Procedure

1. You can change the group name by clicking on the right mouse button. Select the
"Properties" menu item.

2. You can modify the signal name by double clicking on it. You can also add a
description for the signal. The description is displayed in the program as a tooltip.

3. Confirm the settings with <Accept> or with <OK>.

11.3.2 Procedure as seen from the program

At the start of programming the external interface are not yet known, but you would like
to commence with programming and find out the inputs and outputs that you need.

1. Define the inputs and outputs, groups and signals in the navigation area. Please
see the description in "Configure Inputs and Outputs, Page 80" for this purpose.

2. As soon as you know the physical interfaces at which the IO Signals are available,
you can switch to the IO Configurator and assign these signals to the physical
interfaces.

11.3.2.1 Example: Signals of an ibaFOB-4io-S card (complete module)

You assign the physical signals of link0 of the FOB card.

Prerequisite

You have defined a group "MotorA" and under this, the input
signals "MotorA_N_Ist(Int)", "MotorA_Ta(Int)" and "MotorA_Status(Int)" in the program
(in the navigation area of the inputs and outputs).

figure 102: "Inputs – Outputs"

ibaLogic-V4 Manual

Issue 4.2.4 187

Procedure

1. Open the I/O configurator.

2. Update the hardware using the <Update Hardware> button.

3. Activate link0 on the FOB card.
Please make sure that the data type of the link matches that of the signals already
defined.
You can see the signals defined in the project in the "Assign Signals" tab.

4. Select a hardware signal from the tree structure on the left.
Drag & drop it on the signal.
You have, thus, assigned the virtual signal to a physical signal.

Result

You can also see the assignment in the design area.

figure 103: Assign signals

 Manual ibaLogic-V4

188 Issue 4.2.4

11.3.3 Modify Signal Assignment

You can modify existing assignments. Multiple methods are possible.

Method 1

 Simply drag another hardware signal and drop it on a virtual signal that has already
been assigned.
The assignment gets modified by doing this.

Method 2

 Drag a hardware signal that is already in use and drop it on a virtual signal.
An information message pops up.

 Acknowledge the information message, after which the assignment gets modified
and the link to the old signal is deleted.

Note

You can assign only one virtual signal to a hardware signal.

11.3.4 Using externally defined signal names

Using the export / import function, you can also use signal names that are available in
external documents, e. g. in a spreadsheet program.

Procedure

 Specify the hardware signals.

 Export the I/O configuration using the context menu of the inputs and outputs.

 Select "Export Configuration" in the menu. A dialog box is displayed.

 Specify the target path and file name.

ibaLogic-V4 Manual

Issue 4.2.4 189

Result

You get a CSV file that you can open using an ASCII editor or a spreadsheet program.

figure 104: CSV file in ASCII editor (Notepad)

Important Note

You can see the hardware signals defined in the columns, Address, Type and InOut.

Do not modify these.

You can edit the virtual signals under the columns, Group, Symbol and Comments, or
use copy & paste to accept them from the external document.
Please note that the names in the "Symbol" column conform to the IEC standard.

 Exit the IO Configurator to import the data.

 Select "File - Import - Signal mapping" from the main menu.

 Manual ibaLogic-V4

190 Issue 4.2.4

11.4 PCI Interfaces (Windows PC)

This section describes the special settings of the interface cards.

For more information please refer to "Hardware Resources, Page 177".

11.4.1 Connection to the "iba World"

The following PCI cards are available for FOC connection to decentralized iba
peripherals (PADUs) and to the iba system interface cards. You will find them in the
resource tree under the FOBFnn or FOBDnn interface type.

 ibaFOB-S5 (FOC link, 3 Mbit Protocol)

 ibaFOB-X6 (FOC link, 32 Mbit Protocol)

 ibaFOB-D (FOC link, 2 Mbit / 3 Mbit / 5 Mbit / 32 Mbit Protocol)

For each type of card, there are variants for the number of links being 1, 2 or 4 for the
input and output.

11.4.1.1 Card Settings

When you mark the FOBFnn or FOBDnn interface in the tree on the left, the associated
card settings are displayed on the right.

 Interrupt mode, see "Hardware Resources, Page 177"

 Enabled, see "Hardware Resources, Page 177"

 Variable cycle time

figure 105: Card settings

Check box Explanation

Enabled You can use only cards that have been enabled.

Variable cycle time This mode has not been realized.

5 Cards for this interface are available only for old systems.
6 Cards for this interface are available only for old systems.

ibaLogic-V4 Manual

Issue 4.2.4 191

11.4.1.2 Link Settings

The channel configurations are displayed in the section on "Link settings". The number
of channels varies depending on the variant of the ibaFOB-io card used.

Settings Explanation

Enable You can enable or disable individual links here.

Input format Set the data format for the incoming optical fiber cable
telegrams here. Select INTEGER, REAL or S5REAL depending
on the devices connected. If you are using the FOB-X or the
FOB-D card, other data formats for the 32 Mbit FOC protocol
are provided as options.

figure 106: Link settings

The data type must match the type or the setting configured on the device connected.

Device Protocol Data type/telegram type

ibaPADU-8
ibaNet750

3 Mbit Integer

SIMATIC TDC/LO6 32 Mbit 32 Mbit Real 100 µs

ibaLink-SM-64-i-o 3 Mbit Integer, Real or S5Real, depending on
the switch setting on the module.

ibaLink-SM-64-SD16
ibaLink-SM-128V-i-2
ibaBM-DPM-S-64

3 Mbit Integer or Real, depending on the setting
on the module

iba-PADU-S-IT 32 Mbit depending on the setting in ibaPADU-S-
IT

ibaBM-DPM-S (Profibus)
ABB AC800PEC

32 Mbit 32 Mbit Real 1000 µs

ibaLink-VME 32 Mbit depending on the card setting

Note

Applicable to FOB-X cards: If a 32 Mbit protocol is used on the input side, the
associated output link cannot be used.

 Manual ibaLogic-V4

192 Issue 4.2.4

Settings Explanation

Output Format Data type of the FOC telegram in the output direction. The
setting depends on the device connected (see input format).

Signals Here, ibaLogic enters the maximum number of signals possible
depending on the data format selected. You can reduce the
number of signals for your requirement.

The number of signals entered applies to analog values and
digital values in the input and output direction.

An "FobFnnMxx" or "FobDnnMxx" module having "n" analog
signals of the type configured and "n" binary signals (nn = card
index, xx = link number) is created for each link enabled after
you press <Accept> in the resources tree under the appropriate
interface:

Buffered mode With this, you can enable a mode for this link in which the data
received is also provided as arrays. See the following
description for this purpose.

11.4.2 Buffered Mode

11.4.2.1 Applications

The buffered mode is necessary for the following applications:

 The least possible interval time of ibaLogic-V4 is 1 ms. If signal values need to be
sampled with a cycle time of less than 1 ms, the signal values must be recorded in
buffered mode. Above all, this must be used in the context of the following modules:

 FOB-D and FOB-X in 32 Mbit mode

 Connection to ibaPADU-S-IT (in I/O mode)

 Connection of the local peripherals for the PADU-S-IT platform

 Even for peripheral signals that arrive with a cycle time of 1 ms, but which cannot
be evaluated in the 1 ms interval on account of the large number of signals and the
computing power required.

The values read in are buffered and provided to the program as array resources. The
purpose of this mode is to relieve the program from the evaluation of the individual
signals if this is not necessary.

Example:
Signals are required merely for FFT analysis. It is then not possible (with a sampling
time < 1 ms) and also not meaningful to sample individual signals and to collect them in
arrays in order to perform an FFT analysis on them. The arrays are generated by the
buffered mode with the proper size so that no computing time is required by the
program for handling individual values.

ibaLogic-V4 Manual

Issue 4.2.4 193

The buffered mode has the following features:

 Data from the FOB link is sampled by the driver at a rate determined by the time
base configured.

 The data sampled is collected in a cyclic buffer for each signal. The size of the
cyclic buffer and the sampling rate for filling it up are configured by the program in
the output resources (see below).

 Each signal is made available to the program in the form of an array having a
length of 256. The program runs in a slower task interval and reads the complete
arrays.

 The program, thus, cannot process individual samples, but instead, only arrays of
samples, e. g. for evaluating an FFT analysis or for archiving.

 Example: Despite a sampling rate of 1 ms, and a task interval of 50 ms, you can still
perform an FFT analysis with 128 samples.

 In parallel with the buffered data, individual signals can, for example, also be
generated for other programs.

Note

Buffered mode is possible only for the "Measurement" sampling mode.

11.4.2.2 Input Resources

An FobFBuffernnMxx or FobDBuffernnMxx mode is created (nn = card index, xx = link
number) for each link enabled in buffered mode after pressing <Accept> in the
resource tree under the appropriate interface.

figure 107: Assign input signals

 Manual ibaLogic-V4

194 Issue 4.2.4

Input signals Explanation

CurDataSize Feedback of the buffer size configured in the output
signal.

FillCount Counter that is incremented when the input array has
been filled up to the length "Datasize".

BufAnaii Array of type integer or real having a length of 256.

BufDig00 Array of type Boolean having a length of 256.

Only for "variable cycle time"

CurCycleTime Feedback of the interrupt cycle time configured in the
output signal.

11.4.2.3 Output Resources

The resources are provided in the module type FobFBuffernnMxx or FobDBuffernnMxx
(nn = card index, xx = link index).

figure 108: Assign output resources

Output signals Explanation

Data size Number of signals to be measured that are entered by
the driver in the buffer until the counter is incremented
("Filling level"). Values up to 256 are permissible.

Ratio Integral multiple of the time base, with which the buffers
are filled up. For example,ratio=2 means that only
every 2nd value of signal sampled is entered in the
buffer.

RequestBuffer Controlling the sampling. The buffers are filled up only if
the output is "TRUE"

Only for "variable cycle time"

CycleTime Variable interrupt time. Specification in microseconds.
Permissible values: 1000 … 10000.

SetCycleTime Signal for accepting the cycle time (rising edge).

ibaLogic-V4 Manual

Issue 4.2.4 195

11.4.3 ibaLogic as Profibus Slave

The Profibus is organized strictly according to the master-slave principle. In
accordance with the DP-V0 standard, communication takes place only between the
master and slaves, whereby the link is set up and monitored by the master. ibaLogic
can be both a Profibus master and a Profibus slave.

For example, for a link to a SIMATIC S7 system that is the master,
ibaLogic must work as a slave. The Profibus slave card, ibaCOM-L2B is used for this
purpose.

The following interface cards are arranged under the L2Bnn type of interface:

 ibaCOM-L2B 4/8
(Profibus DP slave card with a jack, 4 slaves)

 ibaCOM-L2B 8/8
(Profibus DP slave card with two jacks, 8 slaves)

11.4.3.1 Card Settings

When you mark the L2Bnn interface in the tree on the left, the associated card setting
are displayed on the right.

figure 109: Card Settings for ibaCom-L2B

 Interrupt Mode, see "Hardware Resources, Page 177"

 Enabled, see "Hardware Resources, Page 177"

 Manual ibaLogic-V4

196 Issue 4.2.4

11.4.3.2 Settings for bus interface 0/1

The L2B card has one or 2 Profibus DP interfaces. You can define 4 slaves for each
interface.

Settings Explanation

Enable You can enable or disable individual slaves here.

Slave no. Assign a separate station number to each slave that is enabled.

Mode Select a telegram format for each enabled slave that matches with
the Profibus master configuration. For this purpose, iba provides a
number of GSD files that correspond to the telegram formats
available here for selection:

Telegram
format

iba GSD
file

Contents Data direction

Integer_In iba_0F01 32 integer and 32 binary
signals

Master  ibaLogic

Real_In iba_0F02 32 real and 32 binary signals Master  ibaLogic

S7Real_In iba_0F04 28 real and 32 binary signals Master  ibaLogic

Integer_inOut iba_0F08 32 integer and 32 binary
signals

Master  ibaLogic

Real_InOut iba_0F09 32 real and 32 binary signals Master  ibaLogic

S7Real_InOut iba_0F0B 28 real and 32 binary signals Master  ibaLogic

A module "L2BnnMyySxx" is created for each slave enabled after pressing <Accept> in
the resource tree under the appropriate interface, and this module has the analog
signals of the type configured and 32 binary signals (nn = card index 00-03,
yy = interface number 00-01), xx = slave number 00-03).

11.4.4 ibaLogic as Profibus Master

If you would like to address, for example, an ET2000 station from ibaLogic, it must
work as the master. A Profibus master card must be installed in the ibaLogic PC for this
purpose.

The following interface card is plugged in under the SST_Masternn type of interface:

 SST-PB3-PCU (one channel, PCI)

 SST-PB3-PCU-2 (two channels, PCI)

 SST-PB3-PCIE-1 (one channel, PCI Express)

 SST-PB3-PCIE-2 (two channels, PCI Express)

Note

Using the SST card requires a license.

ibaLogic-V4 Manual

Issue 4.2.4 197

11.4.4.1 Brief Description

Since this card is the product of another manufacturer, its configuration and
customization varies from the scheme for the iba cards.

In general, you must generate a configuration for the Profibus that contains the
parameters required for all the stations connected to the Profibus and for the
communication. The program for creating the configuration (SST Profibus Console)
generates a binary parameter file (.bss) as the result. This must be loaded by the
ibaLogic in the I/O configurator and transferred to the SST card.

11.4.4.2 Card Settings

When you mark the SST_Masternn interface in the tree on the left, the associated Card
Settings are displayed on the right.

figure 110: Card Settings

"Enabled"

You can use this option to enable or disable the card.

 Manual ibaLogic-V4

198 Issue 4.2.4

11.4.4.3 Configuration

"File"

This is where you specify the file generated using the CONSOLE program mentioned
above. You can click on to its right to open a browser with which you can select the file
in the folder structure.

"Swap modes"

Depending on the device connected, you may have to swap, i. e. interchange the
high and low parts of the data type so that the data can be read in and processed in
ibaLogic according to the IEC standard.

Explanation of the swap methods (each alphabet means one byte, blanks have been
added only for the sake of clarity):

Swap method Output Becomes

per Datatype "ABCD EF G H IJKL" "DCBA FE G H LKJI"

Words "ABCD EF G H IJKL" "BADC FE H G JILK"

Dwords "ABCD EF G H IJKL" "DCBA HG F E LKJI"

11.4.4.4 Peculiarities with signal assignment

If you have enabled the configuration settings file of the card with <Accept>, a module
having the name of the SST card "PFB3-PCI-000x" is created in the resource tree
under SST_Master. The following signals for each possible Profibus slave are visible
under this:

Direction Signal Meaning

Input SSTnnInStatusyyy Status and diagnostics information for telegrams
received from the slave yyy.

Data type: "SSTSTATUSSTRUCT"

Output SSTnnOutStatusyyy Status and diagnostics information for telegrams
transmitted to the slave yyy.

Data type: "SSTSTATUSSTRUCT"

Input SSTnnStructInyyy Data received from the slave yyy

Data type "SST_Struct"

Output SSTnnStructOutyyy Data transmitted to the slave yyy

Data type "SST_Struct"

nn = card index 00-03, yyy = Profibus slave number from 002-127

Now, you can generate the virtual signals for the complete module (see section "Signal
assignment, Page 182") or only for the status, input and output signals individually for
the Profibus slaves that you have configured and customized.

ibaLogic-V4 Manual

Issue 4.2.4 199

Note

The signals generated here have the structure data types.

The status structure generated internally, "SSTSTATUSSTRUCT" consists of a
number (ErrorCode) and a text string (ErrorString).

The "SST_Struct" data type is a placeholder for the structures of the user data
telegrams that you have to define. This structure must match the Profibus telegram to
be transmitted or received exactly, as you have defined in the Profibus
configuration (Profibus Console) for each station. You can refer to the manual of the
L2B cards for the structure of the Profibus telegrams (L2B).

For more information, please refer to "Data types, Page 278".

Important Note

An example of the connection of the Profibus master card is documented and included
in the CD supplied.

11.4.5 SIMADYN D / SIMATIC TDC Connection

iba has developed two PCI cards for connection to these systems and these cards
differ from one another merely in the FOC interface technology and protocols.

 The ibaFOB-SD card is plugged in at the FOBSD type of interface. This enables
connection to the world of SIMADYN D via the rack coupling modules CS12, CS13
and CS14 as well as to the SIMATIC TDC rack using the CP53M0 communication
module.

 The ibaFOB-TDC card is plugged in at the FOBTDC type of interface. This enables
connection to the world of SIMATIC TDC via the GDM (Global Data Memory,
CP52IO interface module).

Note

The settings for the FOBSD and FOBTDC modules are identical. Hence, the settings
are explained here using the ibaFOB-SD card as an example.

 Manual ibaLogic-V4

200 Issue 4.2.4

11.4.5.1 Card settings

When you mark the FOBSD interface in the tree on the left, the associated Card
Settings are displayed on the right.

figure 111: Card Settings for ibaFOB-SD/TDC

 Interrupt Mode, see "Hardware Resources, Page 177"

 Enabled, see "Hardware Resources, Page 177"

11.4.5.2 Link settings

Active Inputs

Select one or more inputs here specifically from a total of 16 channels.
Please note that there must be a transmit telegram present in the SIMADYN D or
SIMATIC TDC for each input channel that you select.
One transmit telegram contains exactly 32 real values (Data type NF for SIMADYN D)
and 32 binary values (1 DWORD or V4 value).

The following parameters must be configured on the transmitter module:

 AT (Channel name): MxPDADAT (x = 0 … F for channel 0 to 15)

 MOD (Channel mode): R (for Refresh)

 LEN (Telegram length): 132 (only for the CTV_P transmitter module)

Active Outputs

Here, you can specifically select one or more outputs from a total of 8 channels.

Please note that a receive telegram must be present in the SIMADYN D or
SIMATIC TDC for each output channel that you select.

A receive telegram contains exactly 32 real values (Data type NF for SIMADYN D) and
32 binary values (1 DWORD or V4 value).

ibaLogic-V4 Manual

Issue 4.2.4 201

The following parameters must be configured on the receiver module:

 AR (Channel name): PDAMxDAT (x = 0 … 7 for channel 0 to 7)

 MOD (Channel mode): R (for Refresh)

 LEN (Telegram length): 132 (only for the CRV_P receiver module)

An "FOBSDnnCHxx" (nn = card index, xx = channel index) module containing a total of
32 real and 32 binary signals is created for each channel enabled after pressing
<Accept> in the resource tree under the appropriate interface.

Technostring

The "Technostring" function has not yet been released.

11.4.5.3 Communication Settings

 BGT Name:
The PC must be defined to the SD/TDC environment using a name consisting if six
characters, e. g. "IBA001".

 Link Name:
The ibaFOB-SD uses this name to register with the communication partner
SIMADYN D or SIMATIC TDC. This name must be unique within the CS14 or
CP53M0 communication island, i. e. no other Siemens or iba modules should
register with the same name. The default name is "IBAL1A".

 Partner Name:
Enter the name configured in the SIMADYN D or SIMATIC TDC for the
communication partner module here.
For SIMADYN D, it is the name of the CS14 module, e. g. "D0500B",
and for SIMATIC TDC (GDM), it is the name of the GDM module, usually D01_P1.

 Software Version:
Enter the software version of the SIMADYN D or SIMATIC TDC software here: e. g.
for STRUC V420", and for CFC "V610".

Note

No communication takes place if these settings are incorrect.

11.4.6 Reflective Memory

You can access VME bus-based third-party systems (e.g.: GE FANUC,
Converteam HPCi) using reflective memory cards.

The following interface cards are plugged in under the RFM type of interface:

 VMIC PCI-5565PIORC:
(Reflective memory card, 64 or 128 MByte)

 VMIC PCI-5588 among others:
(Reflective memory cards of older design)

 Manual ibaLogic-V4

202 Issue 4.2.4

11.4.6.1 Brief Description

Since this card is the product of another manufacturer, its configuration and
customization varies from the scheme of the iba cards.

As the memory of an RFM card does not have any homogeneous data range, but
contains ranges with different data types, it cannot be used the same parameters as
that for iba-FOB cards.

You have to define the position and structure of the data used in an external parameter
file. This is loaded in the ibaLogic I/O configurator and signals in the desired data types
are generated from there.

11.4.6.2 Card Settings

When you mark the RFM interface in the tree on the left, the associated Card Settings
are displayed on the right.

figure 112: Reflective memory cards

 Enabled
You can use this option to enable or disable the card.

11.4.6.3 Configuration

 Swap mode

The swap mode is only available for the older RFM cards which directly support this in
the hardware.
Newer cards (PCI-5565 or PCIE-5565) no longer support this.

Note

The methods defined here are different from those for the SST card. The designations
here are taken over from the VMIC so that they match with the RFM cards connected
to them.

ibaLogic-V4 Manual

Issue 4.2.4 203

Explanation of the swap methods (each alphabet means one byte, blanks have been
added only for the sake of clarity):

Swap mode Explanation

Not "ABCD EF G H IJKL"

Bytes "BADC FE H G JILK"

Words "CDAB GH E F KLIJ"

Words and bytes "DCBA HG F E LKJI"

based on data type "DCBA FE G H LKJ"

11.4.6.4 File

Parameter file that contains the description of the signals.

Procedure

1. Generate a template for this data using the <Generate Template> button.

2. Next, open this file using an editor.

3. Enter a line in the following format for each signal:
"Signal name, data type, memory address, bit number, direction, comments"

Format Explanation

Signal name Must conform to the IEC standard and be unique, i.e. also
input and output signal names have to be different.

Data type Elementary data type (see "Standard data types, Page 278")
BOOL
BYTE, WORD, DWORD
SINT, USINT, INT, UINT, DINT, UDINT
REAL, LREAL

Memory address Offset within the RFM memory in decimal or hexadecimal.
You can switch from one to the other using a line
with "#hexval" or "#intval" at the beginning.

Bit number Relevant only for BOOLEAN data type, otherwise 0

Direction "INPUT" or "OUTPUT"

Comments Any text

 Manual ibaLogic-V4

204 Issue 4.2.4

Example

#HexVal
TestSignal1,REAL,0x1000,0,INPUT, test signal input
TestSignal2,REAL,0x2000,0,OUTPUT, test signal output
#IntVal
TestBit_0,BOOL,2048,0,OUTPUT, Bit 0
TestBit_1,BOOL,2048,1,OUTPUT, Bit 1
TestBit_2,BOOL,2048,2,OUTPUT, Bit 2

Result

A template file is generated.

11.4.6.5 Flow of Setting Parameters

Procedure

1. Press the <Generate Template> button and enter the path and file name in order to
generate a CSV file as a template.

2. Open this data using an editor and enter the signals into it.

3. Open the modified file in the I/O configurator and load the configuration in the RFM
card by clicking on <Accept>.

4. Wait until the initialization phase is complete and the RFM card has been fed with
these parameters.

5. Then press <Update Hardware> once again so that the signals defined are
displayed in the resource tree.

6. Assign the generated signals to the virtual signal names.

11.5 ibaPADU-S-IT Platform

Local Peripherals of the ibaPADU-S system is available only if a device of type
ibaPADU-S-IT has been selected as the platform.

ibaPADU-S-IT is the central unit for the ibaPADU-S family of modular devices for
intelligent and decentralized inputs/outputs.

The modular concept is based on a module rack having a rear wall bus, in which the
central unit and up to 4 other input/output modules can be plugged in.

There are modules available as I/O modules for analog and digital inputs/outputs for
different signal levels, for current and voltage signals and for sampling rates of up to
1 kHz (buffered access) or max. 40 kHz (unbuffered access).

Hardware Documentation

Please refer to the ibaPADU-S-IT manual for detailed information on the ibaPADU-S
properties (see "Support and contact, Page 330").

ibaLogic-V4 Manual

Issue 4.2.4 205

11.5.1 Settings

When you are connected with the platform and press the <Update Hardware> button,
you see the following PADU-S settings.

PADU-S settings Explanation

Interrupt source DNS name of the PADU-S-IT, e.g. "S-IT-16-000074"

Module settings depending on the I/O resource

Signal settings depending on the I/O resource

I/O resources PADU-S-IT incl. PADU-S module
TCPIP_OUT
GLOBALVAR

Module settings

In the "Module settings" section, all available modules of the ibaPADU-S system are
displayed depending on the selected I/O resources.

 Enabled:

You can completely disable specific modules.

 Buffered access:

If the buffered access is enabled, further configurations in the ibaLogic program must
be performed (see ibaPADU-S-IT-16 manual).

Only with a buffered access it is possible to reach a sampling rate of up to 20 kHz on
the ibaPADU-S system.

In unbuffered access, max. 1 kHz is available (task interval = 1 ms)

 Convert values into REAL:

If this option is selected, the signals are acquired not as INT, but as REAL and can be
processed in the program without further conversion.

Note

Depending on the module type, the "Buffered access" and "Convert values into REAL"
options are not available.

Signal settings

In the "Signal settings" section, all configurable signals of the particular I/O resource
are displayed depending on the selected I/O resources and corresponding module
settings (see ibaPADU-S-IT-16 manual).

 Manual ibaLogic-V4

206 Issue 4.2.4

11.6 TCP/IP Communication

The following types of TCP/IP communication are available:

 General TCP/IP connection via the module (for more information, please refer to
section "TCPIP_SENDRECV, Page 104")

 ibaPDA data transmission using TCP/IP

TCP/IP communication, whose parameters can be configured in the I/O configurator, is
presently limited to TCP/IP telegram transmission to the ibaPDA. In contrast to the
native TCP/IP communication with the TCPIP_SENDRECV module, the module
structure in the ibaPDA is supported here using a special protocol. On the WinXP or
PADU-S-IT platforms, you can transmit a total of 16 telegrams each having 32 real
values and 32 digital values to one or more ibaPDA receivers.

Note

Please note that the communication via TCP/IP is not real-time enabled. This means
that data transmitted cyclically is not received in real time, and some telegrams may
get lost etc.

11.6.1 TCP/IP Connection Settings

Select the appropriate channel from the tree on the left for the setting.

You can enable each of the 16 channels individually and enter the following
parameters:

figure 113: TCP/IP Connection Settings

 IP address or name of the remote station, i. e. the computer on which the
ibaPDA Server is running.

 Port number: This must match that in the ibaPDA.
Default setting is 40000.

ibaLogic-V4 Manual

Issue 4.2.4 207

Note

On the ibaPDA system, the configured port must be enabled in the firewall to be able
to measure the data with ibaPDA.

 PDA module number is a unique number 0..63. This must match a module index of
the PDA system connected.

11.7 OPC Communication

The international OPC standard (OLE for Process Control) has prevailed for the
connection to HMI systems (Human Machine Interface, control & monitoring) or for the
measurement of slow signals.

11.7.1 OPC Server

The ibaLogic OPC Server provides all variables defined as "OPC visible" to the OPC
Clients, which have been connected to the OPC Server. The OPC Server generally
runs on the same machine as the ibaLogic Server and is connected with the PMAC via
TCP/IP.

Note

The number of OPC variables permissible depends on the license purchased
(Dongle).

Note

You can also run the OPC Server on another computer. You have to make a special
inquiry with iba for this purpose.

An OPC Client finds the ibaLogic OPC Server under the name
"iba.Logic4OPC.1". You can select the OPC variables using their variable names with
the help of a browser service if the link is established.

The OPC Server works according to the DA (Data Access) specification V2.05a.

Note

You have to make a number of settings in DCOM and carry out safety guidelines for
connecting the OPC Client to the OPC Server.

Documentation

There is a separate document for this purpose that you can get from iba on request.

 Manual ibaLogic-V4

208 Issue 4.2.4

1. In order to set certain OPC Server properties, open the options of ibaLogic by using
the
"Tools - Options…" menu item.

2. Switch to the tree on the left and select "Runtime Options".

3. Set the desired option.

Option Explanation

Disable OPC Server The OPC Server is shut down completely.

Read only mode Even those variables that have been defined as "OPC
write-enabled" can only be read.

Read and write mode Default setting: Access is as defined in the variable
parameters.

All elements are visible
for reading

Even the variables that are not "OPC visible" can be read
by the OPC Clients but cannot be written.

ibaLogic-V4 Manual

Issue 4.2.4 209

11.7.2 Setting the OPC Variable Parameters

An off-task connector (OTC) must be created for each OPC signal desired in ibaLogic.
The OPC selection fields must be enabled in the "Off-Task Connector Edit" dialog box.

figure 114: Edit Off-Task Connector

The data types allowed for the OPC connection depends on the data type of the OPC
Client used. Normally, you can use the elementary data types and arrays.

The shortest update time is 50 ms as seen from ibaLogic, however, you must note that
this depends to a large extent on the data volume.

The OPC variables are marked and identified with special colors. For more information
on setting parameters, see "Off-Task Connectors, Page 157".

You can find the OPC Server using the OPC Server browser under the
name "iba.Logic4OPC.1".

 Manual ibaLogic-V4

210 Issue 4.2.4

12 Database Management

ibaLogic is a database-based application. In order to save intermediate results, you
must backup the database regularly. ibaLogic-V4 provides support for this purpose by
offering the options of automatic or manual backup.

12.1 Backup Database

You should always consider database backup before making comprehensive
modifications to it.

12.1.1 Manual Database Backup

Backup always saves the complete and current ibaLogic database. This database may
have several workspaces. You can see the workspaces that currently exist in the
database in the client by selecting the "Open Workspace" menu option.

Prerequisite

 You have opened the ibaLogic Server dialog box.

 You have a connection to the database.

Procedure

1. Select the "Backup - Database…" menu.

The following dialog box opens:

ibaLogic-V4 Manual

Issue 4.2.4 211

2. Choose a file name and a folder in which the backup file should be saved.
Enable the option "Compress backup to zip", if the hardware configuration of the I/O
manager and all DLLs present should also be saved.

3. Click on <OK>.

Important Note

It is particularly recommended to backup the database before updating the ibaLogic
version.

In the course of further advanced development of ibaLogic, during updates of
ibaLogic, modifications are also made to the database with the help of database
scripts. It is then no longer possible to revert to an older version.

12.1.2 Automatic Database Backup

You have to configure the setting in ibaLogic for automatic database backup.

Requirement

 You have opened the ibaLogic Server dialog box.

 You have a connection to the database.

 Manual ibaLogic-V4

212 Issue 4.2.4

Procedure

1. Select the "Tools - Options" menu.

2. Select "Server - Autobackup" in the folder tree.

3. Tick the checkbox "Enable Autobackup ".

4. Select the time period for the backup interval.

Since modifications to ibaLogic projects can be made only with ibaLogic Clients, the
interval is started only when a client is connected to the server. If a modification has
been detected in the database, a new backup in the form of a *.bak or *.zip file is
created after the interval time has elapsed.

ibaLogic-V4 Manual

Issue 4.2.4 213

Important Note

Specify different folders for automatic and manual backup respectively. Since the
cleanup strategy cleans up only the folder specified for automatic backup, you can
thus prevent your manual backup copies from being deleted.

The cleanup strategy is determined by the combination of the

 "Time until cleanup" (Cleanup offset)

 "Number of backup copies"

fields.

Option Explanation

Backup interval The setting creates a backup at the time interval specified.

Time until cleanup (Offset) The setting creates backup copies until the minimum time span of
the backup and cleanup offset is reached.

Number of backup copies The option determines the minimum number of backup copies
that remain at all times. The time period " Cleanup offset " is
taken into consideration in the process.

Backup folder The file names are assigned by ibaLogic:

"Autobackup_ibaLogic4_<Date, Time>.bak" or "…..zip".

Date and time are defined in YYYYMMDDHHMM format.

Compress backup to ZIP file The option saves the backup as a ZIP file.

Example

If you have the settings as illustrated in the window given above, all backup copies that
are older than one week are deleted. However, at least 10 files remain. These can be
of any date.

 Manual ibaLogic-V4

214 Issue 4.2.4

12.2 Restore Database

Restore means that a previous version of the database with the workspaces contained
in it will be loaded for editing.

Prerequisite

 You have opened the ibaLogic Server dialog box.

 You have a connection to the database.

 You have stopped the ibaLogic Server.

Procedure

1. Select the "Restore - Database…" menu.

The "Restore" dialog box is displayed.

2. Click on the <…...> button and select a backup database (ZIP or BAK file) from the
folder that is open.

By default, ibaLogic provides the folder given below or notes the path to which the
last access was made.

ibaLogic-V4 Manual

Issue 4.2.4 215

3. Click on the <OK> button to restore the backup copy.

The progress of the backup process is displayed on the screen. Thereafter, the
server goes to the "Stopped" state.

4. If required, confirm any confirmation prompts that pop up.

5. Start the server for continuing the programming work via the client.

 Manual ibaLogic-V4

216 Issue 4.2.4

12.3 Reset Database

You can use this function to reset your current database to its original state (empty).

Important Note

This also deletes all data in the database.

First, make a backup copy of the database.

Prerequisite

 You have opened the ibaLogic Server dialog box.

 You have a connection to the database.

 You have stopped the ibaLogic Server.

Procedure

1. Select the "Databases – Reset Database...…" menu.

2. Confirm the dialog with OK if you really want to reset the database.

ibaLogic-V4 Manual

Issue 4.2.4 217

13 Program Analysis, Debugging and Time behavior

You have various methods and tools available for program analysis and debugging.

You need to differentiate between whether the application is in the test environment or
is already actively in use.

Description Test
environment

Active Use

Debugging Structured Text blocks using
breakpoints

Yes No
(Program is
stopped.)

Trace blocks or Log DLLs created by the user
(e. g. LogFile_String_WriteDll.dll, ……)

Yes Conditional
(Time behavior)

Analysis of the Time behavior, curve shape etc.
with ibaPDA Express

Yes Yes

Writing DAT files for ibaAnalyzer with the help of
the DAT_FILE_WRITE block

Yes Yes

13.1 ibaPDA Express

The ibaPDA Express is used for checking a signal waveform quickly.

Requirement

The function is available only when the program has been switched online.

Procedure

 Start the ibaPDA Express by clicking with the mouse on the
<ibaPDA Express> button in the toolbar.

Result

ibaPDA Express is opened with its own window within the ibaLogic application.

figure 115: ibaPDA Express with several signals

 Manual ibaLogic-V4

218 Issue 4.2.4

13.1.1 Controlling the Signal Display

The following toolbar is available for controlling the signal display.

figure 116: ibaPDA Express: Toolbar

The following table contains the explanation of the icons.

Icon Name Key operation Explanation

Start scrolling <F6>
(Switch)

Starts continuous display with the current time
point.

Active, when "Pause scroll" is pressed.

Pause scroll <F6>
(Switch)

Stop the continuous display. After pressing this,
a ruler appears in the graph that can be moved
with the mouse and with which the curves can be
measured. The signal values are displayed in the
legend. You can move the X-axis using the
mouse. In this manner, you can browse values
from the past.

Active, when the display is on.

Assign signal
colors automatically

 All curves of this display are colored in
accordance with the default scheme for each
graph.

Auto scale all <F5> All curves of this display are scaled automatically
for each graph and the Y-axis.

Restore manual
scaling

 Manual settings for scaling, where defined, are
restored after auto scaling or zooming.

Active, if manual scaling has been defined.

Zoom out by one
step

<F3> Active only when the display has been zoomed.
Return to the previous zoom factor (reduce).

Zoom out all <F4> Active only when the display has been zoomed.
Return to the initial (automatic) display.

Scroll direction You can change the scroll direction by selection
in the pull-down menu.

13.1.2 Select Signals

You can drag signals by keeping the <Alt> button pressed from a connector and drop
them into the ibaPDA Express window.

Optionally, you can:

 Display a signal in a separate signal strip.
To do this, drag the signal on the X-axis and a new strip is created.

 Place a signal in an existing strip.
To do this, drag the signal to the strip, and another Y-axis is created.

 Place a signal on an existing Y-axis (same scaling with one other signal).
To do this, drag the signal to this Y-axis.

The new signals in one window are automatically assigned a new color. Those signal
names having the same color are arranged in the top left section of the strip. Signals
having a common axis are joined with a dash.

ibaLogic-V4 Manual

Issue 4.2.4 219

13.1.3 Move signal

Signals can be moved between graphs and also beyond the limits of the window. This
means that a signal can be dragged from one graph to another graph that already has
a signal. You can differentiate between the signals with the help of the automatic color
assignment.

Procedure

1. Move the mouse pointer to the name (Legend) of the signal that needs to be
moved. The mouse pointer indicates with a wavy line that it has acquired the signal.

2. Drag the signal, keeping the mouse button pressed, to the other graph in order to
drop it there in a free area.

Result

You have created two signals with separate Y-axis.

Remark

Do not leave the signal in step2, but drag it to the existing signal until a small black
arrow appears. In this manner, the same Y-axis is assigned to the signal.

In case of binary signals, you also determine the sequence of the signals. Binary
signals are displayed below one another. Depending on whether the small black arrow
docks above or – as illustrated below – the signal, the binary signal is displayed above
or below it.

Result

You have created two signals with a common Y-axis.

 Manual ibaLogic-V4

220 Issue 4.2.4

13.1.4 Mark the signals with color

You can mark the signals with colors in different ways:

 Automatically

 Manual setting

Procedure

 Press the <Assign signal colors automatically> button to assign colors to the signals
automatically.

13.1.5 Remove Signal from the Display

Procedure

1. Place the mouse pointer in the graph on the name (Legend) of the signal that needs
to be removed.

2. Click the right mouse button. The context menu is displayed.

3. Select "Remove signal".

Note

By removing the Y-axis, all signals are removed that are assigned to this axis.

13.1.6 Remove Graphs from the Display

There are different options to remove a graph.

Procedure

1. Click on the small cross at the top left above the top of the bar.

or

ibaLogic-V4 Manual

Issue 4.2.4 221

2. Click the right mouse button in a free area within the graph.
The context menu is displayed.

3. Select "Remove graph".

13.1.7 Scale Axes

13.1.7.1 Auto scaling

In order to display a signal over its entire amplitude range in one graph, it is
recommended that you use the auto scaling feature. All signals or all Y-axes of the
graph are scaled accordingly with respect to the largest amplitude.

Procedure

1. Press the right mouse button in the appropriate graph. The context menu is
displayed.

2. Select "Auto scale".

3. If you would like to auto scale all graphs in one signal display, press the <F5> key
or select the <Auto scale all> button.

13.1.7.2 Scaling with the mouse

You can change the scale of the signals in the Y-direction at the upper ends of
the Y-axis scale using the mouse.

Procedure

1. Bring the mouse pointer close to the end of the scale until blue arrows appear.

2. Keep the mouse button pressed on the arrow pointing upwards: The scale gets
expanded.

3. Keep the mouse button pressed on the arrow pointing downwards: The scale gets
reduced.

4. Keep the mouse button pressed on the dot between the arrows: Auto scaling is
carried out.

Tip

If you are using a mouse with a scroll wheel, you only need to position the mouse
pointer on the scale. You can change the scale using the scroll wheel. This
functionality is also available on the X-axis.

 Manual ibaLogic-V4

222 Issue 4.2.4

13.1.7.3 Scaling using the display settings

Procedure

1. Click the right mouse button in the area within the desired graph.

2. Select "Properties".
The "Properties" dialog box is displayed.
You can specify manual scaling using the "Y-axis" option. If a graph has multiple Y-
axes, there is a separate tab in the dialog box for each Y-axis.

3. Accept the settings with <Apply>.

Result

All signals that are assigned to the corresponding Y-axis are scaled with the same
setting.

Remarks

By selecting the "Apply to preferences" option, you select the settings configured as the
default settings.

13.1.8 Move Scales

You can move the X-axis as desired in the pause mode of the display.

Requirement

Y-axis: Auto scaling is not selected.

ibaLogic-V4 Manual

Issue 4.2.4 223

Procedure

1. Position the mouse pointer on the Y-axis until the hand icon appears.

2. Press the left mouse button in order to move the scale upwards / downwards or to
the left / right.

13.1.9 Zoom Function

The zoom function affects both the X and Y directions.

If you zoom in a graph, all other graphs located in the same display also get zoomed.
A signal display can always maintain only one time base for all the graphs that it
contains.

When the display is active and running, zooming expands the time base and hence
enlarges the display. The signals run through faster, since the same geometric length of
the X-axis is converted to fewer units of time.

Zooming in general

1. Press the <Shift> button and zoom simultaneously with the mouse. Only the X-axis
is zoomed.

2. You can restore the original and un-zoomed display using the button or the
<F4> key.

13.1.9.1 Zooming in (Enlarge)

You can zoom in all over in one strip. In the zoomed in state, you can change the scale
in the Y-direction without affecting the zoomed section of the X-axis.

Auto scaling in the Y-direction pertains to the values in the zoomed (= visible) area.

Requirement

You have zoomed out.

Procedure

1. Draw a rectangle using the left mouse button so that the area selected is enclosed.

2. Release the mouse button.

13.1.9.2 Zoom out (Reduce)

Requirement

You have zoomed in.

 Manual ibaLogic-V4

224 Issue 4.2.4

Procedure

1. Press the <Zoom out one step> button or the <F3> key to achieve reduction step by
step.
Thus, with each action, all previous zoom steps are reversed one after another.

2. You can restore the original and un-zoomed display using the <Zoom out all
steps>button or the <F4>key.

13.1.10 Trend graph Properties

You can configure general settings for the display of graphs in the Trend graph
Properties dialog box.

Procedure

1. Click with the right mouse button on the signal strip.

2. Click with the left mouse button on "Properties...".

3. Select "Trend graph" in the structure on the left.

ibaLogic-V4 Manual

Issue 4.2.4 225

13.1.10.1 Miscellaneous

Option Explanation

Activate smoothed display This option smoothens the graph lines as they are
displayed.

Display toolbar This option displays the toolbar.

Displays signal values in the
legend

This option displays the signal values in the legend.

Display bars This option displays the bar associated with the
graph.

Transparent legend This option makes the legend style transparent.

Scroll direction The scroll direction is set.

Restart scrolling Configuration of a certain time in seconds, which
restarts scrolling after inactivity for this period of
time.

Refresh interval Setting for the time intervals at which the display
should be refreshed.

Align digital signals with the
legend

This option aligns the digital signals with the legend.

13.1.10.2 Colors

You can use this dialog screen to change the color scheme for the trend graph display
and the pen colors for the curves.

 Click on the respective color button to change the color. Select the desired color
from a color palette.

 Background, axes, gridlines:

 Click on the respective color button to change the color. Select the desired color
from the color palette.

 Graph:
Background color in the signal strip uniform or with progressive color.

 Double click on the small box at the end of the color bar and select the color from
the color palette.
If required, you can double click on the color chart to add other color tabs and to
color them, and these can also be moved. In order to delete a color tab, mark it with
a mouse click (black arrow tip) and press the key.

 Signals:
You can use these pen colors to define 16 curve colors that are available for the
trend curve display. The program assigns colors to the trend curves automatically
based on these 16 colors. The pen colors are also provided in the signal definition
in the signal grid in the sequence shown here (line wise from the top to the bottom).

 Manual ibaLogic-V4

226 Issue 4.2.4

13.1.10.3 Fonts

The fonts are defined for the lettering of the axes and the legends (Signal names). You
can open the dialog box to change the font using the <...>browser button at the end of
the line.

13.1.10.4 Signals

If you call up this dialog box in a graph or for an existing trend graph, in which signals
are being displayed, the signals with their current setting are listed, including the colors.

figure 117: Trend graph

figure 118: Graphical signal settings

You can choose the color for each signal from a selection list in the cells of the "Color"
column of the table.

figure 119: Color selection list

13.1.10.5 X-axis

Time range

You can specify a fixed time range in seconds instead of automatic scaling, and this is
shown in the display. In this manner, you control the speed and the expansion of the
signal in the X-direction in the display.

figure 120: X-axis: Properties

ibaLogic-V4 Manual

Issue 4.2.4 227

Fixed axis

Normally, the time axis moves with the signal so that new values sampled are always
shown at the border of the graph in the display. Using the "Fixed axis" option, the time
axis from the current time point for the period (time range) configured is fixed and the
sampled values are written into the empty graph. If the graph is filled, the next (empty)
time range is displayed and sampled values continue to be written.

13.1.10.6 Y-axis

If you have created more than one Y-axis in a graph, the settings dialog screen has
multiple "Y-axis #" tabs. Thus, you can configure settings for all Y-axes separately.

figure 121: ibaPDA Express: Display settings

13.1.10.7 Scientific notation

 "Auto"

 "Always"

 "Never"

Option Explanation

Auto Depending on the size of the scale values (number of places before or after the decimal
point), the scales are labeled in scientific notation (power of 10) or not.

Always Scale values as power of 10

Never Scale values always with digits before and after the decimal point

 Manual ibaLogic-V4

228 Issue 4.2.4

13.1.10.8 Scaling mode

 "Auto scale"

 "Dynamic auto scale"

 "Dynamic auto scale" (increase only)

 "Manual scale"

Option Explanation

Auto scale Default setting; when displaying one or more graphs, the Y-axis of the strip is scaled
once in accordance with the lowest and highest of all values occurring (when
involving a signal).

Dynamic auto scale When you enable this option, the scaling is continuously adjusted with the highest
signal amplitudes. If the amplitudes go beyond the signal strip again, the scaling is
further reduced.

Dynamic auto scale
(increase only)

When you enable this option, the scaling is continuously adjusted with the highest
signal amplitudes. If the amplitudes go beyond the signal strip again, the scaling
remains unchanged.

Manual scale You can specify the starting (Min.) and end (Max.) value of the scale manually when
you select this option. (Visible only when the dialog box is opened from the context
menu in the signal strip, and not with the presets.)

13.1.11 Extended Functionality

You can enable the extended functionality using the icon in the title bar from the context
menu.

The following functions are available:

 "Toolbar"

 "Signal Tree"

 "Fullscreen-View"

The display of the ibaPDA Express gets extended when you select the menu.

figure 122: Context menu "ibaPDA Express"

ibaLogic-V4 Manual

Issue 4.2.4 229

Toolbar

It displays a toolbar having the following elements:

Icon Name Explanation

Modify presets Opens the properties menu.

Real time Start / Stop function of all strips.

Add trend graph Add another trend graph
The trend graphs can be arranged as desired by holding the
"Trend graph" bar with the left mouse button and moving it.
The docking points become visible.

Add QPanel Add supplementary functions QPanel, scope view,
digital meter to Express.

 Add scope view

 Add digital meter

Load view Open an ibaPDA Express configuration as an XML file.

Save view Save an ibaPDA Express configuration as an XML file.

Signal tree

Displays a tree view of all variables contained in the program. These can be placed in a
trend graph using Drag & Drop or by double clicking.

Full screen view

ibaPDA Express is displayed in full screen mode. You can exit this mode by pressing
the <F10> key.

Other Documentation

You are requested to refer to the appropriate add-on documentation of the ibaPDA
system for the description.

 Manual ibaLogic-V4

230 Issue 4.2.4

13.2 Time behavior

Depending on the platform, ibaLogic provides a deterministic Time behavior (Real-Time
behavior).

Platforms:

 Windows XP/7:
non-deterministic, relatively stable cycle times for task times of ≥ 5 ms.

 PADU-S-IT:
deterministic, very stable cycle time for task times of ≥ 1 ms.

The tasks of ibaLogic have a base time slot of minimum 1 ms, and this is based on the
interrupt time base, which can be configured under the "Tools I/O configurator" menu.
This is the minimum task interval.

You cannot have faster tasks. It is possible that certain iba modules sample data at 50
µs and forward these as an array of values (Packets) to ibaLogic. ibaLogic then
processes the values in the secondary clock cycle. Further information, please refer to
„Buffered Mode, Page 192".

For the purpose of task handling, ibaLogic logic checks the tasks pending for
processing at the basic clock cycle configured, and enters these in an internal task list.
This task list is evaluated cyclically from the top to the bottom and tasks evaluated are
removed from the list.

It must also be noted that the basic clock cycle configured is also the clock cycle in
which inputs can be read and outputs can be written.

IbaLogic knows only the interval task.

The interval task is started in accordance with the time interval configured. The
program linked with it has its own evaluation time.

A Interval

B Evaluation time

figure 123: Interval task

ibaLogic-V4 Manual

Issue 4.2.4 231

13.2.1 Evaluation time

The program evaluation times of various programs in the entire user project is also
important for the consideration of the Time behavior.

ibaLogic provides the evaluation time for various interval tasks to the user to check the
system loading as a number and as a bar.

In this example, considering a 1 ms interval task, the percentage value means that
34.36 % of 1 ms is required. This means that this value is a percentage of the time slot
configured for the task. 34.36 % for a task time slot of 1 ms works out to 0.3436 ms of
CPU time for the program.

13.2.2 Turbo mode

In order to prevent ibaLogic from getting temporarily blocked by Windows, you can
assign one processor core to ibaLogic exclusively in multi-core systems.

Note

In order to ensure flow and performance as deterministic as possible, iba
recommends:

 For task times < 20 ms:
Use an iba interrupt source
(ibaFOB card or similar)

 For task times < 5 ms:
Use the turbo mode

Tip

The Time behavior can also be controlled with the help of compiler options using the
"Tools - Options - Runtime options" menu.

 "Size:"
Default setting, interpreter mode (UCODE)
with ST breakpoints possible

 "Both:"
Interpreter mode and native code mixed,
no ST breakpoints possible

 "Speed:"
only native code, no breakpoints, and not all LREAL functions are
available (e. g. all exponential functions)

In addition, ibaLogic differentiates between the "Measurement" mode and the "Soft
PLC" mode. Settings see "General Settings, Page 180".

 Manual ibaLogic-V4

232 Issue 4.2.4

13.2.3 Messung

This operating mode ensures that ibaLogic does not lose any input sample. This is also
true when individual tasks within ibaLogic need to be suspended. The runtime system
of ibaLogic ensures that the data are made available equidistantly in the task interval
configured. If tasks get suspended, the system makes up for the cycles. As a result,
with task suspension for limited time, it may happen that ibaLogic, at times, evaluates
only those values that belong to the "past".

Nonetheless, it is always ensured that, for example, values that are equidistant and
correct are available for FFT analyses. Permanent suspension or blockage leads to
buffer overflow. Such customization is not acceptable.

You must make considerations regarding the modes of operation possible for reading in
the hardware signal inputs.

In the "Measurement" mode, the hardware input signal status is buffered in accordance
with the task interval configured. The program then works with the oldest buffered value
when it starts next. This means that the "Soft-SPS" mode and the "Measurement"
mode work the same way when the program processing times < the interval time. If the
processing times are greater, you have buffer overflow of the sample values in the
"Measurement" mode.

B Evaluation time

figure 124: Buffer overflow – Shifts

Example: The dark green 1 ms clock cycle saves the value that is processed when the
task begins (light green). The black arrow indicates the sampled value with which the
task works and how the buffer overflow condition develops. The evaluation time of a
task is more than 1 ms, and hence, there is a time shift.

13.2.4 Soft PLC

In this operating mode, which is suitable for control and regulation tasks, ibaLogic
ensures that only the latest signal states are processed. In contrast to the
"Measurement" operating mode, it does not matter here whether samples get lost or
not. On the other hand, it is desired that current data, as far as possible, that is, data
from the latest I/O transfer cycle is available.

Data is read in from the input resources with every cycle before executing the first task.
The aging time of the resources is determined by the base cycle of ibaLogic that is
configurable. If, for example, this base cycle is 10 ms and the first task is configured
with a cycle of 50 ms, this task finds input data that is definitely not older than 10 ms.
The data can, however, be newer.

ibaLogic-V4 Manual

Issue 4.2.4 233

Output values are written in both modes by each task in the cycle at the end of the
required task evaluation time, provided output resources have been included in the
plan.

In the "Soft PLC" mode, the current hardware input signal status is read in and
processed at the start of the task.

13.2.5 Time considerations with multiple tasks

figure 125: Evaluation without overflow – 2 tasks having different interval time and priority

The 2 rows above represent the individual tasks in the theoretical evaluation sequence
if they were to run independently. The numbers are a counter for triggering the tasks
(1st trigger, 2nd trigger...).

An interval task A having an interval time of 5 ms is displayed in the uppermost row.
The priority is 1, i.e. of lower priority compared to the 10ms task B having priority0
(second row). The width of the bar (impulse) is equivalent to the evaluation time of the
task of the associated program. The background represents a clock cycle grid. The
impulse always begins at the interval time set.

Practically, however, the tasks are executed "serially". This is illustrated by the
lowermost row. At the starting time point, ibaLogic sees the tasks that need to be
evaluated, and evaluates them one after another in accordance with the priority
entered. First, task B, since it has the higher priority, and after its evaluation time, the
task A...

To clarify the actual situation, the program evaluation times shown are taken to be very
large. In reality, the evaluation times are primarily of the order of µs, so that, for
example, 20 tasks can be evaluated in 5 ms without a problem (empirical value).

 Manual ibaLogic-V4

234 Issue 4.2.4

13.2.6 Worst-case considerations

If you assume a longer evaluation time for task A and task B, suspension or time shift is
generated. Suspension or time shift means that the task is no longer started at the
expected time point, since another program is still being evaluated. The task with the
higher priority is started at the correct point in time.

figure 126: Task evaluation with time shift (suspension)

The evaluation times have been selected in such a manner that both tasks together
require more than 5 ms, and hence, task A cannot be started at the exact time interval
foreseen. If a base cycle of 1 ms has been configured, a check is conducted at each
cycle to see whether a task needs to be triggered. In the example here, task A (5 ms,
priority 1) and the task B (10 ms, priority 0). These are entered in an internal list
according to their priority and then started.

13.2.7 Explanation of the case above

The jobs of the internal list are illustrated in the figure "Task evaluation with time shift -
 Excerpt".

At the outset, ibaLogic sees that task A (5 ms, priority1) and task B (10 ms, priority 0)
need to be executed and enters them in the internal job list according to their priority.
Tasks that have been started are removed from the job list, new ones are added, and
this is how the above figure emerges.

figure 127: Task evaluation with time shift – Excerpt

ibaLogic-V4 Manual

Issue 4.2.4 235

13.2.8 Task evaluation with time shift

Let us assume that task A has been configured with an interval time of 2ms (with the
same program evaluation times), in which case, certain cycles are lost.

figure 128: Task evaluation with time shift

A different picture emerges if the priorities are interchanged.

figure 129: Task evaluation with time shift (reversed priority)

Another consideration is the "Soft PLC" mode and the "Measurement" mode.

In the "Soft PLC" mode, the hardware inputs are always read at the beginning of the
task (x point in the following figure).

figure 130: Hardware inputs in the "Soft PLC" mode

The situation in the "Measurement" mode is different.

figure 131: Hardware inputs in the "Measurement" mode

Here, the input signals are buffered in time, but are evaluated with a delay in case of a
time shift or task suspension.

 Manual ibaLogic-V4

236 Issue 4.2.4

Important Note

In general, there is a time shift or task suspension if the sum of the program evaluation
times exceeds the smallest interval time used. There is buffer overflow if this time shift
is permanent. The programs and the computer no longer work in line with the
requirements. In case of temporary time shift or task suspension, it depends on the
respective application whether this can be tolerated.

Data is written to the hardware outputs in the next base clock cycle after the evaluation
time has ended. Hence, it may be meaningful to configure the base clock cycle to be
faster than the task interval. If, for example, the evaluation time is 50 µs, the task
interval time is 5 ms and the base clock cycle is 1 ms, data is written to the outputs
after 1 ms.

ibaLogic-V4 Manual

Issue 4.2.4 237

13.3 Debugging

The following errors may occur:

 Program errors

 Compilation errors

13.3.1 Program errors

Frequently occurring errors in programs:

 Errors in user-defined function blocks

 Division by 0

 Incorrect signal trends

 Incorrect evaluation order or sequence

13.3.1.1 Errors in user-defined function blocks

In order to trap logical errors, ibaLogic-V4 provides you the option of setting so-called
"Breakpoints" in the function blocks, so that you can check the execution of your ST
code. For more information, please refer to "Structured Text Editor, Page 126".

13.3.1.2 Division by 0

If the following message appears in the event window, it means that division by 0 has
occurred.

"Exception: OnlineServer: PMAC Status: Division by Zero in
program.functionblock, Offset 0x0022, Stack 0x0001"

The message indicates the location at which the division by 0 has occurred. In the
example given above, the error has occurred in the function block "functionblock" in the
program "program".

13.3.1.3 Incorrect signal trends

In order to be able to check evaluated values, ibaLogic-V4 provides the tool
ibaPDAExpress. You can display the signal trends in real time with the help of this tool
and thus, track whether your block is yielding the expected output values with various
input parameters.

13.3.1.4 Evaluation sequence

If, in spite of error-free function blocks and macro blocks, the evaluation does not run
as you expect it to, it is possible that the problem lies with the evaluation sequence.

In order to check the blocks that are evaluated first, you can view the evaluation
sequence of the corresponding program and thus, unearth any errors in the sequence.

For more information, please refer to "Evaluation sequence, Page 60".

 Manual ibaLogic-V4

238 Issue 4.2.4

If your program contains feedback paths, it is necessary to know the block that is in the
first or last position in the evaluation sequence.

13.3.2 Compilation errors

Although the syntax of the ST in the user-defined FBs is checked by the block
generator prior to compilation, it may happen under certain circumstances, that
compilation of the IL code generated fails.

In such a case, you receive an error message in the event window that indicates this.

If there is a message in your event window that appears as follows, please scroll up
using the slider on the right border until you can see the first error message.

Example:

1
2

[01.03.2010 14:19:14] [<Computername>] [ibaLogicClient] Info:
Generation started...

3
4

[01.03.2010 14:19:14] [<Computername>] [ibaLogicClient] Info:
Compilation started...

5
6

[01.03.2010 14:19:14] [<Computername>] [ibaLogicServer] Info: TIMER
Generation: Ticks since start of IL generation: 31, that is 0,03
seconds

7
8

[01.03.2010 14:19:15] [<Computername>] [ibaLogicClient] Exception:
IL compilation failed: Compilation ended with errors.

9 [01.03.2010 14:19:15] [<Computername>] [ibaLogicServer] Info:
10
11

Building resource C:\Documents and
Settings\<Benutzername>\Application
Data\ibaLogic\NewWorkspace\NewProject\ENV\Resource\Resource.MAK.

12
13

C:\DOCUMENTS AND SETTINGS\<Benutzername>\APPLICATION
DATA\IBALOGIC\NEWWORKSPACE\NEWPROJECT\CustomTypes.typ

14
15
16

C:\DOCUMENTS AND SETTINGS\<Benutzername>\APPLICATION
DATA\IBALOGIC\NEWWORKSPACE\NEWPROJECT\FB_STRINGOUT.POE(3,5,2): E:
S3023: Invalid operand type for this operation.

17 1 error(s), 0 warning(s) –
18
19

C:\DOCUMENTS AND SETTINGS\<Benutzername>\APPLICATION
DATA\IBALOGIC\NEWWORKSPACE\NEWPROJECT\FB_STRINGOUT.POE.

20
21
22

C:\Documents and Settings\<Benutzername>\Application
Data\ibaLogic\NewWorkspace\NewProject\T00_INPUT.POE(2,9,14): E:
S3026: Undeclared identifier.

23
24
25

C:\Documents and Settings\<Benutzername>\Application
Data\ibaLogic\NewWorkspace\NewProject\T00_INPUT.POE(3,2,6): E:
S3005: This is not a function block instance.

26
27
28

3 error(s), 0 warning(s) - C:\Documents and
Settings\<Benutzername>\Application
Data\ibaLogic\NewWorkspace\NewProject\T00_INPUT.POE.

29 3 error(s), 0 warning(s).

If compilation fails, always begin with the first error message that appears in the event
window.

ibaLogic-V4 Manual

Issue 4.2.4 239

In order to be able to find the errors, please proceed as follows:

 Enlarge the event window so that the events starting from "Compilation
started" are displayed.

 Look for the first message that contains an error. The other messages are possibly
errors as a consequence of the first error. In the example given above, it is the
message
"C:\DOCUMENTS AND SETTINGS\<Username>\APPLICATION
DATA\IBALOGIC\NEWWORKSPACE
\NEWPROJECT\FB_STRINGOUT.POE(3,5,2): E: S3023: Invalid
operand type for this operation"

 Copy the path in which the erroneous block is located to the clipboard and insert it
in the address line of Explorer. In the example given above, this is "C:\DOCUMENTS
AND SETTINGS\<Username>\APPLICATION DATA\IBALOGIC
\NEWWORKSPACE\NEWPROJECT“

 You will find the erroneous block there, in our case "FB_STRINGOUT.POE". Open it
using an ASCII editor that displays the line numbers, e. g. NotePad++.
You see, for example, the following program code (Example given above)

1 FUNCTION_BLOCK FB_StringOUT
2 VAR_INPUT
3 i1 : INT;
4 END_VAR
5

6 VAR_OUTPUT
7 o1 : IBA_STRING;
8 END_VAR
9

10 (** o1 := 'TestString' + int_to_string(i1); **)
11 (* assign - Stmt *)
12 LD 'TestString'
13 ADD (i1
14 int_to_string
15)
16 ST o1
17

18 END_FUNCTION_BLOCK

 At the end of the block, you see a set of three numbers, e. g. (3,5,2).
This indicates the following:

1st number: Region in which the error has occurred.

 1 = Program name / FB name/Function name (Line 1 above)

 2 = Variables range, begins with "VAR" (Line 2 above)

 3 = Program, begins after the last END_VAR (Line 9 above)

2nd number: Line number within the section (5 is equivalent to line 13)

3rd number: Column number (or tab number) in the line (2) concerned

 the erroneous line is thus "ADD (i1 … ".
Search the last comment line above this statement. In this, you can see the source
text of the ST statement
o1 := 'TestString' + int_to_string(i1);

 Manual ibaLogic-V4

240 Issue 4.2.4

 The error is the following: The ADD operand is not permissible for strings.
Possible cause: in other compilers, e. g. in ibaLogic-V3, you can combine strings
with '+'. The ibaLogic-V4 compiler always interprets '+' as addition. In order to
append strings to one another, please use the CONCAT function.

 The correct statement for ibaLogic-V4 is:

1 v1 := int_to_string(i1);
2 o1 := concat('TestString',v1);

Sometimes you can get more information from the "CompilerOut.txt" file, which helps
you to eliminate the error.

The "CompilerOut.txt" file is located in the following folder in Windows systems:

 German system
C:\Dokumente und Einstellungen\<Benutzername>\Anwendungsdaten
\ibalogic\<Workspacename>\<Projektname>\GEN\

 English system
C:\Documents and Settings\<Username>\Application
Data\ibalogic \<Workspacename>\<Projektname>\GEN\

13.4 Performance Limits

ibaLogic-V4 has been developed for the 32 bit variant of Windows and has certain
limitations on account of its architecture:

 Maximum RAM size: 4 GB

 Maximum process size (i. e. memory that a runtime system can occupy)

 For WinXP platform: 2 GB

 for the PADU-S-IT platform: 32 MB

The Microsoft SQL Server 2005 Express used by ibaLogic-V4 has the
following system-bound performance limits:

 Maximum database size: 4 GB

 Maximum 16 instances on the same machine

 Support for only 1CPU and 1GB RAM

Moreover, there are limitations resulting from the compiler used that is integrated in
ibaLogic.

This has a maximum segment size of about 64 kB. This means that you cannot define
as many variables as you please within a block (function block or macro block).
Nonetheless, if you exceed the permissible limit of 65292 bytes, an error message is
output.

13.4.1 Example

You have an array of 8,158 LREAL elements, and each of them occupies 8 bytes,
which means that you occupy 65,264 bytes with this array in a function block, plus the
array header of 12 bytes, that is, 65,276 bytes.

ibaLogic-V4 Manual

Issue 4.2.4 241

You can provide the function block with only one input and one output that occupies
only 4 bytes, so that you do not exceed the set limit. Since the header of the FB also
occupies another 8 bytes.

Element Bytes

FB Header 8 Bytes

Array Header 12 Bytes

Array [0 … 8157] LREAL 8158 * 8 Bytes = 65264 Bytes

Input i1 (DINT) 4 Bytes

Output o1 (DINT) 4 Bytes

Total 65292 Bytes

The remaining 244 bytes are required by the compiler for administrative information.
The following figure illustrates the structure of the data segment in a simplified form.

1 Administration

2 FB Header

3 Array Header

4 Array

5 Input

6 Output

figure 132: Data segment(64KB)

You can create up to 600programs / tasks within a project, but this is rather a
theoretical limit considering grounds of clarity.

The number of projects within a workspace is limited only by the maximum database
size on the server.

If you use another SQL server, you can learn about the size specification from your
system administrator.

 Manual ibaLogic-V4

242 Issue 4.2.4

14 Programming rules

Every programming system has an underlying risk of the programming being done in
an unstructured manner, and hence, the outcome that the program is very difficult or, in
fact, impossible to comprehend for you as a programmer as well as for the customer or
any other person working with the system.

figure 133: Example of unstructured programming

The example in the figure given above is restructured for the recommended solution.

14.1 Approach for the solution

Two tasks having the following structure:

 Task 1 Data generation

 Task 2 Data processing

figure 134: Example of structured programming

You do not have to comply with the following guidelines, but however, they simplify
working with ibaLogic.

 Distribute the functions across multiple tasks / programs having illustrative names.

figure 135: Division of tasks / programs

ibaLogic-V4 Manual

Issue 4.2.4 243

 Create one task each for the hardware inputs and the hardware outputs. Assign the
priorities in such a manner that the input task is the first and the output task the last
to be processed.

 Use intra-page connectors within a task, if too many intersections of the lines make
the layout cluttered

 Tag the sub-functions using comment fields.

figure 136: Comments

 Merge reusable program components into macro blocks and create meaningful
description and comments for them.

 Combine complex connections pertaining to a function into a macro in order to
improve overall clarity.

 Use comments and descriptions even within an FB. We recommend a header with
a change index, titles and meaningful indentations of the program lines.

figure 137: Program code comments

 Arrange the blocks within a task in such a manner that they match the evaluation
sequence (from the top left to the bottom right).

 Manual ibaLogic-V4

244 Issue 4.2.4

 Designate off-task connectors with a prefix, e.g. "OTC_" or, if the OTC is used for
an HMI system, with "OPC_".

 Designate the intra-page connectors with the prefix "IPC_". If an "OTC_test" is
present as an input, it can continue to be used internally as "IPC_test" and there is
no repetition of names.

 Configure short prefixes for the names of blocks, macros and their connectors, e.g.
"FB_", "MB_".
(Setting under "Tools – Options – Editors – Function Blocks").

 Assign names to user-defined data types such that they give an indication of the
logical meaning (e. g. ST_ROLLING) or the contents (e. g. AR_64REAL).

 If necessary, move the lines in such a manner that you can trace them clearly. Avoid
any overlapping.

 Utilize the option of enlarging the blocks as desired. In doing so, connector names
become more legible or the lines are easier to trace.

figure 138: Examples of enlarged display

 In general, trap possible sources of error while programming, such as:

 Division by 0

 Access beyond the array limits

 Possible endless loops

ibaLogic-V4 Manual

Issue 4.2.4 245

15 Uninstall ibaLogic

During uninstalling, various messages can occur:

 Query whether the user backups are to be deleted, too.

 Query whether SQL Express is to be uninstalled, too
(only occurs if the ibaLogic database existed exclusively).

Danger by enabling or disabling functions!

Possibility of human injuries and damage to machinery by enabling or disabling
functions and other services (PMAC, OPC ...), which have a direct impact on the
response of the system.

Secure the system while working on it!
Follow the safety regulations applicable!

Important Note

Only those users having administrator privileges can uninstall ibaLogic software.
Please ask your system administrator.

Prerequisite

 All ibaLogic programs are closed.

Note

Messages during uninstalling

SQL Express Instance is removed by confirming the prompt with <Yes>. The database
created during installation is deleted (*.ldf, *.mdf).

 Manual ibaLogic-V4

246 Issue 4.2.4

Procedure

1. Select "Start – iba – ibaLogic v4 – uninstall ibaLogic".

2. Choose the components that you wish to uninstall.

3. Start the uninstalling by pressing the <Uninstall> button.

ibaLogic-V4 Manual

Issue 4.2.4 247

4. Close the dialog box by pressing the <Close> button.Confirm any confirmation
prompts if required.

Important Note

If there are any database backup copies in the installation folder, you are asked during
uninstall whether these should also be deleted. If you confirm with <No>, the backup
copies remain.

 Manual ibaLogic-V4

248 Issue 4.2.4

16 Practice Examples

The aim of this section is to accompany the "Beginner" with the first steps in using
ibaLogic.
It is intended that a small sample program generates the "Aha Effect" and, above all,
demonstrates what iba understands of ergonomic CFC implementation, and what
meaning is given in the process to online update of static and dynamic variables.

Since this is merely an introductory example, it does not illustrate or deal with all
functions of ibaLogic.

16.1 First Steps - Sample Project

The task is to create a program with which a sinusoidal signal is generated. A smoothly
adjustable offset should be added to this sinusoidal signal depending on the status of a
switch. You can create the example completely with the help of standard function
blocks. Nonetheless, in order to be able to explain the highly flexible programming
opportunities and features of the integrated programming language, "Structured
Text" (ST), the example should also be programmed using this alternative.

The input signals and the result need to be displayed as trend graphs.

The sample program is made "live" so that the connectors used are updated
continuously. The change of color to pink indicates that everything is now "serious":
The plant is virtually live!

If outputs are already connected (Actuators, motors, etc.), these would respond
immediately to the program modifications. The customary procedure - programming,
compiling, linking and loading, as well as starting - runs automatically in the
background. Moreover, for the sake of simplification, the preset values for the project
and program names are accepted.

ibaLogic-V4 Manual

Issue 4.2.4 249

16.1.1 Sample Exercise Part 1

16.1.1.1 Task Description

The periodically changing value of a generator (Sinusoidal signal) needs to be added to
the value of a slide controller depending on the status of a switch:

Switch position 1: Generator + Generator

Switch position 2: Generator + slide controller

All variables and, of course, even the result needs to be displayed in a graphics format
as a trend curve.

figure 139: Circuit diagram of the sample exercise

In the first part of the exercise, the example should be implemented with the help of
function blocks (FB) that are available as standard blocks in ibaLogic.

Since laboratory equipment such as a function generator, slide controller and keys do
not have to be connected to the inputs of ibaLogic, such effective functions have been
compiled as Specials and can be placed like other blocks. You can perform active
operations on the Switch and the Slider to test the circuit.

 Manual ibaLogic-V4

250 Issue 4.2.4

16.1.1.2 Start ibaLogic Server and ibaLogic Client

Procedure

1. Double click on the "ibaLogic Server" icon on the desktop.
The ibaLogic Server dialog box opens after the initialization phase. By default, the
server is started automatically when the dialog box opens.

2. Double click on the "ibaLogic Client" icon on the desktop.
The ibaLogic Client dialog box opens after the initialization phase.

Remarks

The event window below the program window documents the program actions and
collisions, if any. If error messages pop up during the startup of the server or the client,
please refer to this documentation for assistance.

ibaLogic-V4 Manual

Issue 4.2.4 251

16.1.1.3 Create a New Project

Procedure

1. Press the <New> button in the toolbar.
The "Add Workspace" dialog box is displayed.

2. Confirm the entries with <OK>.

When you do not change the presets, your project is called "NewProject1" having just
one program "NewProgram". The preset interval time of 50 ms is adequate for the
example.

Remark

If, after beginning your exercise with ibaLogic, you have had to interrupt the "Session"
or you have simply closed all programs (first the client and then the server), you do not
have to begin with <New>.

Your changes are saved automatically.

When you continue in such a case, press the "Open" button, open the workspace you
created and continue working at the position where you have stopped.

 Manual ibaLogic-V4

252 Issue 4.2.4

If you have several workspaces, the search function can be limited by the "Modification
Date" field.

16.1.1.4 Placing the Test Tools

One function block each is required for the task description:

 "Generator"

 "Switch"

 "Slider"

Procedure

1. Click on the <Function Units> button. A folder tree opens in the navigation area.

2. Open the "Specials" folder.

3. Drag one "Generator", one "Slider" and one "Switch" to the design area of the
program designer keeping the left mouse button pressed.
If, in the process, you come too close to a block that is screened, a superimposed
shadow indicates its "Sphere of intimacy" in which no other block should be placed.

ibaLogic-V4 Manual

Issue 4.2.4 253

4. Arrange the blocks in the proper sequence.

16.1.1.5 Placing the evaluation blocks

One function block each is required for the task description:

 "Selector"

 "Adder"

Procedure

1. Open the "Selection" folder in the directory tree of the navigator.

2. Drag the selector (SEL), keeping the left mouse button pressed, to the design area
of the program designer.

 Manual ibaLogic-V4

254 Issue 4.2.4

3. Open the "Arithmetic" folder in the directory tree of the navigator.

4. Drag the adder (ADD), keeping the left mouse button pressed, to the design area of
the program designer.

Remarks

The SELECTOR (SEL) requires a binary signal as the "Decision-maker" (Selector). The
values IN0 and IN1 under consideration for the selection are format-free and they
adapt themselves automatically to the data type with which they are connected.

As already described with the selector, the values to be added are format-free to begin
with. It is only the connection that is first "joined" to one of the inputs that determines
the format.

16.1.1.6 Connecting the selector block with the test tools

The following need to be connected:

 The switch output (SWITCH) OUT with the decision-making input G of the
elector (SEL).

 The slider output (SLIDER) OUT with the input IN0, of the
selector (SEL).

 The generator output OUT with the second input IN1 of the selector (SEL).

ibaLogic-V4 Manual

Issue 4.2.4 255

Procedure

1. Place the mouse pointer on the connector (OUT) of the switch and drag the mouse
pointer, keeping the left mouse button pressed, to the connector (G) of the selector.

2. Complete the remaining connections accordingly.

16.1.1.7 Configuring the slider and generator

The following need to be configured:

 "Slider"

 "Generator"

Procedure

1. Double click on the slider. The configuration menu pops up.

2. Set the "maximum value" of the working range to 100.0. The slider works with a
value between 0 and 100 depending on the slider position.

3. Open the configuration menu of the generator.

 Manual ibaLogic-V4

256 Issue 4.2.4

4. Set the generator type to sinusoidal.

5. Enter an amplitude value of 100.

With this setting, the generator produces a sinusoidal waveform having a value
between +100.0 and -100.0.
Leave the period of the oscillations, as preset, at 10 sec.

16.1.1.8 Switch the partial connections online

The online compiler is also activated by starting the evaluation.

 The background color of the program designer changes to pink.

 All binary connecting lines are colored depending on their status.

 The block connectors are updated continuously and displayed.

 All connections are now "live".

Figuratively speaking, this is comparable with applying a voltage to the test circuit.

In a real-life situation, machines are controlled by ibaLogic via the outputs connected.
In such a case, the impact of "Connecting live" in the case of a program bug would be
felt drastically.

Procedure

 Click on the <Start> button in the toolbar to start the evaluation of the sample
exercise. Confirm the prompt with <Yes>. The online properties mentioned above
get activated.

ibaLogic-V4 Manual

Issue 4.2.4 257

16.1.1.9 Testing the switch and selector

Since the selector is already connected and, moreover, the circuit is switched online, its
function can be tested immediately independent of the switch status of the input (G).
The principle of operation of the selectors is described in this manual under the
standard blocks. You can now implement these explanations in practice.

Procedure

 Change the status of the switch by clicking on the SWITCH with the left mouse
button.

As you can see, in the switched off status (Off), the slider output (Value = 43.5) is
connected to the SEL output (OUT).

figure 140: Slider output (Value = 43.5) connected to the SEL output (OUT)

In the switched on state (ON), the periodically changing generator output is connected
to the SEL output (OUT).

figure 141: Generator output connected to the SEL output (OUT)

 Manual ibaLogic-V4

258 Issue 4.2.4

16.1.1.10 Connecting the adder

Connect the adder in order to complete the circuit as given in the sample exercise.

Procedure

1. Place the mouse pointer on the selector output (OUT) and drag the mouse pointer,
keeping the left mouse button pressed, to the input (IN1) of the adder.

2. Place the mouse pointer on the input (IN2) of the adder, and drag the mouse
pointer, keeping the left mouse button pressed, to the generator output (OUT).
The connection point above the mouse pointer moved locks in position
automatically and forms a branch.

16.1.1.11 Create an OTC to illustrate the result

In our sample exercise, an off-task connector is placed and also connected to illustrate
the result of this simple example. The OTC is called "Result".

Procedure

1. Click with the right mouse button on the design area of the program designer.

2. Select "New... – New Offtask Connector...".

The window "Off-Task connector edit dialog" is displayed.

ibaLogic-V4 Manual

Issue 4.2.4 259

3. Assign the name "Result" in the input field. All other preset values remain as they
are. Configure the data type as "REAL" and set a default value of 0.0.

The preset value as output is correct, since a value is fed to the OTC.
The objective would be the OTC, if it were to receive a value transferred from
another program via the OTC.

4. Connect the OTC "Result" with the adder.

Remarks

An OTC is a key element in graphics programming.

The OTC facilitates the clarity of a project by virtue of the fact that it is distributed over
several programs that communicate with one another via OTCs.
In contrast, the inter-page connector is used within a program.

In this manual, you will also find "Programming rules". This section gives ideas about
how you can make use of OTCs and IPCs in order to avoid tapeworm programming
(entangled connections).

A highly significant communication element is the OTC for connecting with a
supervisory HMI (Human-Machine Interface) system.

16.1.1.12 Analysis of the circuit

You can control the result with the help of the dynamic display of the connectors.
However, even in this simple program running with a 50 ms cycle time, checking the
numerical results is extremely difficult.

Please pay attention to the “Sample Exercise Part 2, Page 260“ in the following.

 Manual ibaLogic-V4

260 Issue 4.2.4

16.1.2 Sample Exercise Part 2

This sample exercise demonstrates the comfort of a dynamic online trend curve display
to evaluate the result.

16.1.2.1 Program analysis using the ibaPDA Express

An ibaPDA display is integrated into ibaLogic for online display of trend curves.

Procedure

 Click on the integrated ibaPDA Express in the toolbar.
This program is integrated in every version of ibaLogic at no extra cost.

 Move the mouse pointer to the OUT connector of the generator and drag it keeping
the <ALT> button pressed and drop it in the ibaPDA Express window.

 Track the intermediate value selected (Generator OUT) as a trend curve display.

 Adjust the Y-axis using the <Auto scale All> button.

 Drag the intermediate values and results of interest to you into the ibaPDA Express
window.

 If these are variables having the same scale, the vales get dragged to the
connector text of the signal already being displayed.

 If the scales are different, drag and drop the connectors into the trend curve
window and a new scale is formed.

 In order to open a new trend curve window, pull the connector to an area outside
the current trend curve window.

ibaLogic-V4 Manual

Issue 4.2.4 261

 Carry out a final check on the sample exercise by changing the switch position to
on / off. Observe the changes in the trend curve display.

16.1.3 Sample Exercise Part 3

Improving the program clarity and readability

You can combine function blocks to macros in order to improve the clarity and
readability of a draft circuit.

16.1.3.1 Procedure

This technique is demonstrated with this small sample exercise.

 Mark the FBs under consideration and their connecting lines with the <Ctrl> button
pressed at the same time. In this case, mark the selector and adder, and their
connecting line.

 Click the right mouse button with the <Ctrl> key pressed, which displays the macro
menu.

 Select the "Implode To Macro" in the macro menu.

 Confirm the intermediate screen (Macro, inputs, outputs).

 Manual ibaLogic-V4

262 Issue 4.2.4

16.1.3.2 Remark

A macro is created. The macro created with a preset name (IMPL_MB_1) performs the
same functions as the individual blocks selected previously. However, it can be
designated appropriately for meaningful and proper documentation.

figure 142: Macro creation

Tip

You can use the lasso method to combine a larger number of FBs into one macro.
Keep the left mouse button pressed and mark a rectangle across the desired objects.

 Double click on the macro generated to display its contents. Some of the lines or
the FBs are placed in a somewhat haphazard manner. You can also edit in the
macro, e. g. add connecting lines that you have overlooked or only "clean it up"
graphically.

 Select <Back> to quit the macro zoom display.

16.1.4 Sample Exercise Part 4

Creating function blocks using ST

The function blocks provided as standard blocks are highly comprehensive in
accordance with the standard. Based on the experience of their own applications and,
above all, based on the suggestions of ibaLogic users, some other useful and special
FBs have been developed and included as standard blocks.

In order to demonstrate to the users the options and methods of creating special blocks
on their own, one FB has been programmed at the end of this sample exercise. As a
functional test, this new FB runs in parallel to the macro created earlier. The results
must be congruent with one another.

ibaLogic-V4 Manual

Issue 4.2.4 263

The IEC 61131-3 standard has given special importance to the "Structured Text"
programming language. With the help of this higher-level language, you can program
very clear and easily readable FBs along the lines of the Pascal programming
language. The ST blocks can also be ported to third-party systems.

If you come from the classical PLC world, you are already conversant with the use of
standard FBs.

On the contrary, if you are entering this kind of the controller world as an Assembler or
high-level language programmer, you would probably find it easier to deal with
Structured Text programming.

16.1.4.1 Procedure

 Select "New... – New Function Block..." in the context menu.
The "Create Function Block" dialog box is displayed.

 Enter "FB_1x" as definition name.

 Set the "Number of Inputs" to 4. Since the macro from the sample exercise part 3
needs to be cloned, the FB needs as many inputs- and outputs (4- inputs and one-
 output).

 Configure the data types for the inputs and the output.

For the inputs

 1x BOOL

 3x REAL

 Manual ibaLogic-V4

264 Issue 4.2.4

For the output

 1x REAL

Using the button " ", you create a new variable.

 Enter a semicolon in the "Structured Text" field.

16.1.4.2 Remark

In the first approach, merely an "empty" function block is created.

The ST field must contain at least one semicolon on formal grounds.

Since the inputs and outputs have already been defined, the new FB can be added in
the layout and can also be connected in parallel to the existing macro.

 Place the new FB appropriately in the layout.

 Connect the new FB in parallel to the macro. In order to create the second result
OTC, copy the existing one with <Ctrl+C>. Add it by pressing <Ctrl+V>. Assign a
new name to the OTC, e. g. "Result_ST".

 You can see that the FB is not yet responding to its inputs. This still needs to be
programmed for its task.

 Double click on the slider. The "Edit Function Block" window is displayed.
You can now carry out the programming using the customary "if", "then", "else" and
"end_if" statements available in almost all high-level languages.

 Enter the following source code (as illustrated in the below screenshot) in the
"Structured Text" field.

ibaLogic-V4 Manual

Issue 4.2.4 265

16.1.4.3 Result

The example begins with the inquiry of the switch status (if i1 = "TRUE" or shorter, if i1)
and adds accordingly, the inputs i4 + i3 or i3 + i2.

figure 143: Sample circuit with addition inquiry

 Manual ibaLogic-V4

266 Issue 4.2.4

16.1.4.4 Remarks

Please also note that all variables in the block are updated online!

 Drag the result of the ST block with the same scale into the ibaPDA Express
display.

The second red curve is congruent with the blue curve (Result from the macro). Only
the last color (blue) of curve 2 is visible. You can see from the bar displayed on the
right that there are two individual values.

figure 144: Congruency of the results

ibaLogic-V4 Manual

Issue 4.2.4 267

16.2 DAT_FILE_WRITE Sample Project

16.2.1 DAT_FILE_WRITE in "Unbuffered" Mode

In the "Unbuffered" mode (Explanation see "Buffered Mode, Page 192") one data
sample is stored in each storage cycle.

Use this mode when the sampling cycle of the data to be saved matches that of the
ibaLogic task cycle. Or when you wish to save data that is generated within ibaLogic
itself.

Task: Store 8 analog values and 8 digital values from ibaLogic

Preset parameters

 Platform: Win XP

 Task interval: 20 ms

16.2.1.1 Step 1: Configure the DFW block

 General Configuration

Asynchr. access: Disabled

Storage cycle: 10 (not relevant)

Start time offset: 0

Save values: Enabled

Write to file: Disabled (is controlled externally)

Post-processing: Disabled

Sign the file: Enabled

Technostring: Empty

File information: Empty

Folder: Choose a directory on a local drive using the browser
button, e. g. "d:\dat\ibaLogic\"

File name: Accept the default value specified.

Sampling time: Specify the task interval time: „0,02" s

 Signal configuration

Name: "module_01"

Mode: „Unbuffered"

Values: 1 (not relevant)

Digital values: 8

Data type: REAL

Analog values: 8

 Manual ibaLogic-V4

268 Issue 4.2.4

 Click with the mouse in the signal definition area. In doing so, the module is created
with 8 digital and 8 real values. The names are preset with "Digital_xx" and
"Analog_xx".
You can rename the standard signal names, e. g. to "Sine".

16.2.1.2 Step 2: Connection of the DFW

 End the module editor.

 Join the connection "STORE_FILE" with the output of a "SWITCH" block.

 Join the first measured signal, e. g. the output of the sinusoidal generator (Data
type REAL) with the input connector "DATA".

 A selection menu opens from which you can choose the module to which you
wish to connect the measured signal.

 When you move the mouse pointer to the desired module, another selection
menu opens from which you can choose the desired signal (e. g. Sine).

 Another selection menu is opened.
Select the menu option "data: REAL".

figure 145: Measured signal assignment

ibaLogic-V4 Manual

Issue 4.2.4 269

Note

Do not let yourself get annoyed by the name of the data structure generated internally.
You can ignore it (provided you do not try to reprogram the joiner in the ST, see
below).

Result

Based on this, ibaLogic generates the joiner with which the element selected is
addressed from the data structure generated internally.

For detailed description of joiners and splitters, please refer to section "Converters,
splitters, joiners, Page 161".

The following "joiners" are generated:

 "Module Joiner"

 "Signal Joiner"

 "Signal Property Joiner"

figure 146: Joiner

1 Signal Property Joiner 3 Module Joiner

2 Signal Joiner

16.2.1.3 Step 3: Create other measure signals

You can connect the other signals directly with the signal joiner.

Note

Do not use the "Disable" inputs of the "Signal Property Joiner" in order to switch off the
recording of individual signals for a period of time. This leads to incorrect recording.

Since the individual samples do not have a time stamp, the trend curve is always
displayed contiguously. The gap desired is then at the end of the .dat file.

 Manual ibaLogic-V4

270 Issue 4.2.4

16.2.1.4 Step 4: Starting the recording

 Start the PMAC.

 Set the SWITCH in DAT_FILE_WRITE.STORE_FILE to "On".

Result

You recognize the ongoing recording from the incrementing value of the interface
"DAT_FILE_WRITE_1.SUM_VALUES_STORED". Check the result by opening the .dat
file generated with "ibaAnalyzer".

16.2.1.5 Alternative: Programming Joiner in ST

In order to keep the layout uncluttered and clear, you can, of course, also program the
assignment of the measured signals at the DATA connector in an ST function block.

Example, similar to the configuration given above:

 Go with the mouse to the DATA connector of the DFW module. The tooltip shows
you the structure data type generated internally,
e. g. "DFW_634094511415156250_Data". Note this down!

 Generate a function block having one or more input variables of type REAL and one
output variable of type DATA connector of the DFW module.

 Activate "Intellisense".

 Begin with the assignment, and write "o1.".

 As soon as you have entered the point, ibaLogic displays the structure elements
(here "module_01"), since "o1" is a structure data type.
Select the elements provided using the up/down cursor keys, accept them with
"Tab" and place a dot at the end.

 Since even "module_01" is a structure, ibaLogic displays its structure elements,
here, all digital and analog signals. Select "Sine" and place a dot at the end.

 "Sine", on the other hand, is a structure data type, thus, ibaLogic displays the
structure elements "data" and "disable". Choose "data" and continue with the
assignment " := i1;".

Result

With this, you have completed the first signal. You can enter other signals in the same
manner. The result should then look like this:

1
2

o1.module_01.Sine.data := i1;
o1.module_01.Analog_02.data := i2;

ibaLogic-V4 Manual

Issue 4.2.4 271

You can only connect the inputs with the matching measured signals and the output
with the DATA connector of the DFW module.

figure 147: Sample circuit "Measured signal assignment"

Note

If you would like to modify the signal configuration of the DFW subsequently, you have
to remove the connection at the DATA connector and, after the modification, assign
the new data type to the output connector of the FB_JOINER. You may possibly have
to modify the assignments in ST.

16.2.2 DAT_FILE_WRITE in "Buffered Mode"

In the "Buffered" mode (Explanation see "Buffered Mode, Page 192") an array of n data
samples is stored in each storage cycle. The signals to be stored must be available as
arrays. This has the consequence that certain parameters of the DFW module have a
slightly changed meaning.

Use this mode when the sampling cycle of the data to be saved is faster than the
fastest in the ibaLogic task cycle.

Task: Store 8 analog values from ibaPADU8.

Preset parameters

 Sampling rate of ibaPADU8: 1 ms

 ibaPADU8 to ibaFOB-Link0, mode integer "Buffered"

 Interrupt time base: 1 ms

 Win XP platform

 Task interval: 20 ms

 Manual ibaLogic-V4

272 Issue 4.2.4

16.2.2.1 Step 1: Configuration of the buffered inputs

 General configuration:
The following hardware signals are available for the configuration of data buffering /
data transfer (see description in section "Buffered Mode, Page 192"):

 Output signals
"…DataSize", „…Ratio", "…RequestBuffer"

 Input signals
"…CurDataSize", "…FillCount"

 Choose the parameters based on the following considerations:

 The array depth in DFW must be greater than or equal to "DataSize".

 Sampling time (in DFW) must be the same as (Array depth * Sample time).

 The "DataSize" must be selected such that the following condition is met:

Task interval ≤ Sampletime * DataSize / Ratio / 3

(The factor "3" is used to ensure that no samples are lost, even if the task gets
suspended.)

 For the example, choose DataSize = 100,
hence, it must be that: "Task interval ≤ 1ms * 100 / 1 / 3",
i.e. the task interval must be less than 33 ms. Select 20 ms.

 Create a user-defined block, with which you can preset the output signals for the
buffered mode, for example

 Join the block with the output signals

(The connectors iTime, oTime and oTakeover are not required here.)

ibaLogic-V4 Manual

Issue 4.2.4 273

16.2.2.2 Step 2: Set the parameters of the DFW module, "General
Configuration"

 Go offline.

 General configuration

Asynchr. access: Disabled

Storage cycle: 10 (not relevant)

Start time offset: 0

Save values: Enabled

Write to file: Disabled (is controlled externally)

Post-processing: Disabled

Sign the file: Enabled

Technostring: Empty

File information: Empty

Folder: Choose a directory on a local drive using the
browser button, e. g. "d:\dat\ibaLogic\"

File name: Accept the default value specified.

Sampling time: Specify the storage interval.
Storage interval = Array depth * sampling time
Select an array depth of 200, based on which the
storage time works out to 0.2 sec.

 Signal configuration

Name: „module_01"

Mode: "Buffered"

Values: 200

Digital values: 8

Data type: Integer

Analog values: 8

 Specify the array size as 200 in the "Values" column. This yields a storage time
of 200 ms (see above).

 Go online.

 Manual ibaLogic-V4

274 Issue 4.2.4

16.2.2.3 Step 3: Accept the buffered input signals

 Drag a "COLLECT_ARRAY" block from the "Type Conversion" function block folder
and drop it in the workspace window.
The block is used to transfer the input array
(data type FOBFBUF_INT) into the array for the DFW.

 Create a user-defined (FB_DAAV) having the following properties to generate the
"TAKEOVER" signal for the COLLECT_ARRAY:

 Connect the blocks as illustrated in the following screenshot.

ibaLogic-V4 Manual

Issue 4.2.4 275

16.2.2.4 Step 4: Transfer the data to DAT_FILE_WRITE

 Create a SWITCH block and connect its output with
DAT_FILE_WRITE.STORE_FILES.

 Connect the COLLECT_ARRAY.BUFFER_FULL with
DAT_FILE_WRITE.STORE_VALUES.

 Connect the output COLLECT_ARRAY.OUT with
DAT_FILE_WRITE.DATA.
ibaLogic pops up the selection menus for the joiner.
Select here the "module_01 - Analog_01 - ... AnaArr0".

Result

The data is transferred to DAT_FILE_WRITE.

16.2.2.5 Step 5: Wiring (Connecting) the remaining inputs

 Copy one COLLECT_ARRAY block for each analog input.

 Connect all COLLECT_ARRAY.TAKEOVER with the DataAvailabe signal
(FB_DAAV.o1).

 Connect all COLLECT_ARRAY.VALID_SIZE with the output of the
converter to " ... CurDataSize".

 Connect each COLLECT_ARRAY.IN with the respective buffered
analog input " … BufAnann"

 Connect each COLLECT_ARRAY.OUT with the respective connector
"Analog_nn" of the joiner.

 Manual ibaLogic-V4

276 Issue 4.2.4

16.2.2.6 Step 6: Starting the recording

 Set the SWITCH in DAT_FILE_WRITE.STORE_FILE to "On".

Result

You recognize the ongoing recording from the incrementing value of the
interface "DAT_FILE_WRITE_1.SUM_VALUES_STORED". Check the result by
opening the .dat file generated with "ibaAnalyzer".

Tips

1. You can use the unbuffered inputs in parallel to the buffered inputs, for
example, to visualize the analog signals using the ibaPDA Express.

2. Check the .dat file: If the time scale does not match the actual recorded
time, either the sampling time has not been configured correctly or the
task interval, DataSize and array depth are not compatible with one
another.

Documentation

The example given above is included in the CD supplied.

ibaLogic-V4 Manual

Issue 4.2.4 277

17 Naming conventions

A name is a string of alphabets, digits and an underscore. The following rules are
applicable:

 Capital and small letters are not relevant, for example, ABCD and abcd are
identical.

 Names must begin with an alphabet or an underscore. A name cannot begin with a
digit.

 Underscores are significant in the names, for example, A_BCD and AB_CD are
different names (in contrast to this in number constants).

 Underscores at the end of a name are not permissible, e. g. ABCD_

 Multiple underscores are not allowed, e. g .AB__CD

 Keywords, e. g. for and if, are not allowed.

Peculiarities with ibaLogic:

Names having only one alphabet are not allowed.

Note

These rules, in general, are applicable to ibaLogic, and even beyond function blocks,
e. g. for the names of OTCs, IPCs, input and output signals, function block names etc.

 Manual ibaLogic-V4

278 Issue 4.2.4

18 Data types

18.1 Standard data types

ibaLogic supports the following elementary data types:

Type Range (Min.) Range (Max.) Explanation

BOOL 0 (FALSE) 1 (TRUE)

BYTE 16#00 16#FF 8-bit

WORD 16#0000 16#FFFF 16-bit

DWORD 16#00000000 16#FFFFFFFF 32-bit word

SINT -128 127 8-bit signed integer

USINT 0 255 8-bit unsigned integer

INT -32768 32767 16-bit signed integer

UINT 0 65535 16-bit unsigned integer

DINT -2147483648 2147483647 32-bit signed integer

UDINT 0 4294967295 32-bit unsigned integer

REAL 1.175494351 e-38 3.402823466 e+38 Floating point, single accuracy,
32 bit

LREAL 2.225073858 … e-308 1.797693134862 … e+308 Floating point, double accuracy,
64 bit

TIME -2147483648ms

-24d_20h_31m_23s_648ms

2147483648ms

24d_20h_31m_23s_648ms

Time, mapped internally as DINT
with 1 ms resolution per
increment

STRING 0 250 characters
(249 for the user, on account
of NULL flag at the end)

String with number of characters
including the end flag (NULL)

18.2 Derived data types

Type Explanation

DIRECT_DERIVED Elementary data types with a fixed value (Constants)

SUBRANGE Integer data types with a limited range of values

STRING_DERIVED String having a fixed value and length

ibaLogic-V4 Manual

Issue 4.2.4 279

18.3 Generic data types

Type Explanation

ENUM Enumerator type, names are defined instead of values.

ARRAY Structure, consisting of any sequence of one of the a.m. data types (with the
exception of the string that already represents an array); maximum four-
dimensional

Maximum number of elements: 32767

STRUCT Structure, consisting of any sequence of the data types mentioned above

Maximum number of elements: 1048576

Important Note

Internally, the memory is limited to an internal size of 63 KB for each level. Thus,
for example, the memory requirement of all input and output variables of a function
block should not exceed this size.

For more information, please refer to "Performance Limits, Page 240".

 Manual ibaLogic-V4

280 Issue 4.2.4

19 Standard Function Blocks

The Appendix contains a tabular overview of all functions and function blocks that are
available in ibaLogic-V4.

19.1 Table interpretation

This section provides tips and instructions on interpreting the tabular overview.

Column Explanation

Input data type The input data type columns list the data types permissible for each connector.
There are blocks for whose connectors the data types are not defined right
from the beginning, but whose data type is defined only when a connection is
drawn to another connector.

Block design

 Green

Functions or function blocks have been defined in conformity with
the IEC 61131-3 standard.

 Yellow Functions or function blocks have been defined by iba AG.

 This block is expandable, i. e. you can change the number of inputs.

Open the block by double clicking on it and modify the "Number of inputs".

Output data type The output data type columns list the data types permissible for each
connector. There are blocks for whose connectors the data types are not
defined right from the beginning, but whose data type is defined only when a
connection is drawn to another connector.

Explanation, example,
ST syntax

There is a note provided for each function regarding whether and how you can
call up the function within ST. You can also clone functions as multiple lines of
ST code. This, however, is not executed.

19.2 Data types

The data type "ANY" with the following variants is displayed for the "untyped"
connectors:

Data type "ANY" with
"untyped" connectors

Explanation

Any_Int All integer types (SINT, INT, DINT, USINT, UINT and UDINT)

Any_Real All real types (REAL, LREAL)

Any_Num All numerical data types (all integers and real values)

Any_Magnitude All numerical data types and the TIME type

Any_Bit All bit-oriented types (BOOL, BYTE, WORD and DWORD)

Any_String STRING data type

Any_Elementary All elementary types (Integers, real values, TIME and
STRING)

Any_Derived All elementary data types, arrays and structures

Any Any data type

ibaLogic-V4 Manual

Issue 4.2.4 281

19.3 Block type with function diagram display

Functions, function blocks and macro blocks are displayed in the design area as
follows:

Block type with function diagram
display

Explanation

Function

You can recognize a function from the corners.

Function block

You can recognize a function block from the rounded
corners.

Macro block

You can recognize a macro block from the flattened
corners.

Automatic type converter

You can recognize a type converter from the letter "C"
in the icon.

Automatically generated structure joiner

Automatically generated structure joiner

This is generated automatically as soon as you try to
connect a single parameter with a structure.

Automatically generated structure splitter

Automatically generated structure splitter

This is generated automatically as soon as you try to
connect a single parameter with a structure.

 Manual ibaLogic-V4

282 Issue 4.2.4

19.4 Analytical Functions

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Real
Real
Bool

Real

DERIVATIVE:
Derivative of a value based on the
time

The output value "OUT" is the
derivative of the input
value, "VALUE", multiplied with a
facto, "FACTOR", of the time
dimension. The output is reset with
the input "RESET" = "TRUE".

Implementation:

OUT:=(VALUEn-VALUEn-
1)*FACTOR

ST: cannot be called up

Real
Real
Bool

Real

INTEGRAL:
Integration of the value over time

The output value "OUT" is the
integral of the input value, "VALUE",
multiplied with a factor "FACTOR",
of the time dimension. The output is
reset with the input,
"RESET" = "TRUE".

Implementation:

OUTn:=OUTn-
1+(VALUEn*FACTOR);

ST: cannot be called up

Dint

Real

Dint
Bool
Real

MOVING_AVERAGE:
Moving average value

The input value "COUNT" defines a
number of values (= samples) that
are considered for average
calculation of the value "VALUE".
The output value "SIZE", indicates
the number of values used for the
calculation of the average value.
The output "FULL", is "TRUE" if the
number of values (samples)
specified has been reached. The
output value "AVERAGE" yields the
cumulative average value.
AVERAGE:= (sum of the last SIZE
values) / SIZE.
The average calculation of the value
is performed continuously. The
number of samples can be modified
whenever required.

ST: cannot be called up

ibaLogic-V4 Manual

Issue 4.2.4 283

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Lreal
Lreal
Lreal
Lreal
Lreal
Lreal
Lreal
Time
Lreal
Time
Bool
Bool
Bool
Bool
Bool
Bool
Bool

Lreal

Lreal

Lreal

Lreal

Lreal

Bool

Bool

PIDT1_CONTROL:
PIDT1 control block

Universal PIDT1 controller that can
be switched to operating modes as
a P, I, PI or PIDT1 controller.

You will find a detailed description
in "PIDT1_CONTROL, Page 107".

ST: cannot be called up

Lreal
Time

Lreal

PT1:
Time delay element of the 1st order

The input variable X is delayed
dynamically by the smoothing time
constant, T1, and fed to the
output Y.

Implementation:

ti: = time_to_lreal(T1) /
time_to_lreal(EvalDeltaTime7);

Y: = 1.0 /
(1.0 + t1) * (X + ti * Yold);

Yold: = Y;

ST: cannot be called up

Lreal
Lreal
Lreal
Lreal
Lreal
Lreal
Bool
Bool
Bool
Bool

Lreal

Lreal

Bool

Bool

Bool

RAMP:
Ramp function block

Block with two different ramps for
the manual and automatic modes.

You will find a detailed description in
"RAMP, Page 115".

ST: cannot be called up

7 EvaldeltaTime is the time between two processing cycles (calculated internally).

 Manual ibaLogic-V4

284 Issue 4.2.4

19.5 Arithmetical Functions

19.5.1 General

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_Num

Any_Num

ABS: Absolute value

Example:

+1343 = abs(-1343);

ST:

OUT := abs(IN);

Any_Real

Any_Real

SQRT: Square root

Example:

+3.0 = sqrt(9.0);

ST:

OUT:= sqrt(IN);

19.5.2 Logarithmic

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_Real

Any_Real

EXP:
Natural exponent to the base e

Result: = earg;

Examples:
2.71828 = exp(1.0);
0.13533 = exp(-2.0);

ST:

OUT:= exp(IN);

Any_Real

Any_Real

LN: Natural logarithm

Example:
+1.0 = ln(2.71828);

ST:

OUT:= ln(IN);

Any_Real

Any_Real

LOG: Logarithm to the base 10

Example:
+1.0 = log(10.0);

ST:

OUT:= log(IN);

ibaLogic-V4 Manual

Issue 4.2.4 285

19.5.3 Trigonometric

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_Real

Any_Real

ACOS: Arc cosine

Example:
1.57079 = acos(0.0);

ST:

OUT:= acos(IN);

Any_Real

Any_Real

ASIN: Arc sine

Example:
-1.57079 = asin(-1.0);

ST:

OUT:= asin(IN);

Any_Real

Any_Real

ATAN: Arc tan

Example:
1.0000 = atan(/2.0);

ST:

OUT:= atan(IN);

Any_Real
Any_Real

Any_Real

ATAN2: Arc tan

Example:
1.1071 = atan2_real(p,p/2.0);

ST:
Different calls for the REAL and
LREAL data types

OUT:= atan2_real(IN1,
IN2);
OUT:= atan2_lreal(IN1,
IN2);

Any_Real

Any_Real

COS: Cosine

Example:
-1.0000 = cos();

ST:

OUT:= cos(IN);

Any_Real

Any_Real

COSH: Hyperbolic cosine

Example:
+27.3082 = cosh_real(4.0);

ST:
Different calls for the REAL and
LREAL data types

OUT:= cosh_real(IN);
OUT:= cosh_lreal(IN);

Any_Real

Any_Real

SIN: Sine

Example:
1.0 = sin(/2);

ST:

OUT:=sin(IN);

 Manual ibaLogic-V4

286 Issue 4.2.4

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_Real

Any_Real

SINH: Hyperbolic sine

Example:
-2.3013 = sinh_real(-/2.0);

ST:
Different calls for the REAL and
LREAL data types

OUT:=sinh_real(IN);
OUT:=sinh_lreal(IN);

Any_Real

Any_Real

TAN: Tangent

Example:
0.648 = tan(10.0);

ST:

OUT:=tan(IN);

Any_Real

Any_Real

TANH: Hyperbolic tangent

Example:
0.76159 = tanh_real(1.0);

ST:
Different calls for the REAL and
LREAL data types

OUT:=tanh_real(IN);
OUT:=tanh_lreal(IN);

19.5.4 Miscellaneous

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_
Magnitude
Any_
Magnitude

Any_
Magnitude

ADD: Addition

Example:
-1404 = -702 + -702;

ST: Use operator:

OUT:= IN1 + IN2 + ... +
INn;

Any_Num
Any_Num

Any_Num

DIV: Division

Example:
-215.3 = -702.0 / 3.26;

ST: Use operator:

OUT:= IN1 / IN2;
Attention: If the divisor IN2 = 0, the
result is set to 0 and an error
message "Division by Zero" is
output cyclically in the event
window.

ibaLogic-V4 Manual

Issue 4.2.4 287

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_Real

Any_Num

Any_Real

EXPT:General exponent to the base
(IN2)

Result: = arg1arg2;

Examples:
125.0 = expt(5.0, 3.0);
4.0 = 16.0 ** 0.5;

ST:

OUT := expt(IN1, IN2);
or

OUT := IN1 ** IN2;

Any_Real

Any_Real

FRAND: Random number in the
range {0 ... arg}

Example:
+0.07116 = frand_real(1.00);
+2.92457 = frand_lreal(6.00);

ST: Different calls for the REAL and
LREAL data types

OUT:= frand_real(IN);
OUT:= frand_lreal(IN);

Any_Int
Any_Int

Any_Int

MOD: Division remainder (Modulo)

Example:
-1 = -26 mod 5;

ST: Use operator:

OUT:= IN1 mod IN2;

Any_Num
Any_Num

Any_Num

MUL: Multiplication

Example:
15.0 = 5.0 * 3.0;
4 = 2 * 2;

ST: Use operator:

OUT:= IN1 * IN2 * … *
INn;

Any_
Magnitude
Any_
Magnitude

Any_Magnitude

SUB: Subtraction

Example:
-708.04 = -702 – 6.04;

ST: Use operator:

OUT:= IN1 – IN2;

 Manual ibaLogic-V4

288 Issue 4.2.4

19.6 Bistable

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool
Bool

Bool

RS: RS flip-flop
(static binary value store)
R-dominant

Truth table:

Input values Output

SET RESET1 Q1

0 0 Q1

0 1 0

1 0 1

1 1 0

ST: cannot be called up

Bool
Bool

Bool

SR: SR flip-flop
(static binary value store)
S-dominant

Truth table:

Input values Output

SET RESET1 Q1

0 0 Q1

0 1 0

1 0 1

1 1 1

ST: cannot be called up

ibaLogic-V4 Manual

Issue 4.2.4 289

19.7 Bit String

19.7.1 Bit shift

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_Bit
Uint

Any_Bit

ROL: Rotate arg1 left by arg2 Bits

Examples:
16#F50000C2
=rol(16#C2F50000,8);
16#45678123
=rol(16#12345678,12);

ST:

OUT := rol(IN1,IN2);

Any_Bit
Uint

Any_Bit

ROR: Rotate arg1 right by arg2 bits

Examples:
16#F00000C2 = ror(16#C2F,4);
16#F500000C = ror(16#CF5,8);

ST:

OUT := ror(IN1,IN2);

Any_Bit
Uint

Any_Bit

SHL: Shift IN1 left by IN2 bits and
fill up zeros on the right

Example:
16#0D90 = shl(16#00D9,4);

ST:

OUT := shl(IN1,IN2);

Any_Bit
Uint

Any_Bit

SHR: Shift IN1 right by IN2 bits and
fill up zeroes on the left

Examples:
16#000C = shr(16#0180,5);
16#00D9 = shr(16#0D90,4);

ST:

OUT := shr(IN1,IN2);

 Manual ibaLogic-V4

290 Issue 4.2.4

19.7.2 Bitwise_Boolean

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_Bit
Any_Bit
Any_Bit
Any_Bit

Any_Bit

AND: Logical AND combination

Example:
16#80=
and(16#0180, 16#FFF0,
16#F0F0, 16#00F0);

ST: Use operator:

OUT := IN1 AND IN2 … AND
INn;

Any_Bit

Any_Bit

NOT: Logical NOT function

Examples:
FALSE = not(TRUE);
16#FE7F = not(16#0180);

ST:

OUT := not IN;

or
OUT := not(IN);

Any_Bit

Any_Bit

Any_Bit

Any_Bit

OR: Logical OR combination

Examples:
1 = or(1, 0, 1);
16#F3 = or(16#F0,16#03);

ST: Use operator:

OUT:= IN1 or IN2 or …
INn;

Any_Bit

Any_Bit

Any_Bit

XOR: Logical XOR combination.

Examples:
FALSE = xor(TRUE,TRUE);
16#F073 =
xor(16#0180,16#F1F3);

ST: Use operator:

OUT:= IN1 xor IN2 xor …
INn;

ibaLogic-V4 Manual

Issue 4.2.4 291

19.8 Character String

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_String
Any_String

Any_String

CONCAT: Combining (joining) sub-
strings

Examples:
'This is a text'=
concat('This is', ' a text')

ST:

OUT:=concat(IN1,
IN2,…,INn);

Any_String
Uint
Uint

Any_String

DELETE:
Delete L characters of a string from
(including) position P.
The first character has the
position 1.

Examples:
'This text'=
delete('This is a text',8,5);
'DE' = delete('ABCDE',3,1);

ST:

OUT:=delete(IN, L,P);

Any_String
Any_String

Int

FIND:
Search for the first match of
character IN2 in string IN1.
If the character is not found, the
result = 0.

Examples:
16 = find('This is a text', 'x');
1 = find('This is a text', 'D');

ST:

OUT:=find(IN1, IN2);

Any_String
Any_String
Uint

Any_String

INSERT:
Inserting string IN2 in string IN1
after the position P. If P=0, IN2 is
inserted at the beginning.

Examples:
'ABCDE' = insert('AE','BCD', 1);
'xABC' = insert('ABC','x',0);

ST:

OUT:=insert(IN1, IN2,P);

Any_String
Uint

Any_String

LEFT:
The left part of a string IN having
length L

Example: 'This is'=
left('This is a text',7);

ST:

OUT:=left(IN,L);

 Manual ibaLogic-V4

292 Issue 4.2.4

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_String
Uint
Uint

Any_String

MID:
Section of a string IN having
length L from and including
position P.

Example:
'is is' =
mid('This is a text',5,3);

ST:

OUT:=mid(IN,L,P);

Any_String

Int

LEN:
length of a string
(without termination characters)

Examples:
17= len('This is a text');
4= len('text');

ST:

OUT:=len(IN);

Any_String
Any_String
Uint
Uint

Any_String

REPLACE:
Replace L characters of the
string IN by IN2 starting from and
including position P

Example:
'ABXE' =
replace('ABCDE','X', 2,3);

ST:

OUT:=
replace(IN1, IN2, L, P);

Any_String
Uint

Any_String

RIGHT:
The right part of a string having
length L

Example:
'a text'=
right('This is a text',6);

ST:

OUT:= right(IN, L);

19.9 Communication

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any
Bool
Udint
Bool
String
Udint
Bool
Bool
Int
Bool
Bool
Bool
Udint
Bool
Bool

Any

Bool
Udint
Bool

Bool
Dword
String

TCPIP_SendRecv:
Transmission and reception of data
via TCP/IP.

The data here is raw data that is
sent via TCP/IP. In this manner, all
native TCP/IP protocols can be re-
created.

You will find a detailed description in
"TCPIP_SENDRECV, Page 104".

ST: cannot be called up within ST

ibaLogic-V4 Manual

Issue 4.2.4 293

19.10 Comparison

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_
Elementary
Any_
Elementary

Bool

EQ:
Comparison of equality

The result is TRUE if all arguments
are identical.

Example:
FALSE = (15.3 = 18.6 = 15.3)

ST: Use operator:

OUT := IN1 = IN2 ;
Only two arguments are allowed.
Implementation with logical
combination of multiple
comparisons:

OUT :=
(IN1 = IN2) AND (IN1 =
IN3) ;

Any_
Elementary
Any_
Elementary

Bool

GE:
Comparison for greater than or
equal to

The result is TRUE if IN1 is greater
than or equal to all other arguments.

Example:
TRUE = 12 >= 0;

ST: Use operator:

OUT:= IN1 >= IN2;
Only two arguments are allowed.
Implementation with logical
combination of multiple
comparisons:

OUT :=
(IN1 >= IN2) AND (IN1 >=
IN3);

Any_
Elementary
Any_
Elementary

Bool

GT: Comparison for greater than

The result is TRUE if IN1 is greater
than all other arguments.

Example:
FALSE = 34 >34;

ST: Use operator:

OUT:= IN1 > IN2;
Only two arguments are allowed.
Implementation with logical
combination of multiple
comparisons:

OUT :=
(IN1 > IN2) AND (IN1 >
IN3);

 Manual ibaLogic-V4

294 Issue 4.2.4

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_
Elementary
Any_
Elementary

Bool

LE:
Comparison for less than or
equal to

The result is TRUE if IN1 is less
than or equal to all other arguments.

Example:
TRUE = (1.2 <= 1.3 <= 1.5);

ST: Use operator:

OUT:= IN1 <= IN2;
Only two arguments are allowed.
Implementation with logical
combination of multiple
comparisons:

OUT := (IN1 < IN2) AND
(IN1 < IN3);

Any_
Elementary
Any_
Elementary

Bool

LT: Comparison for less than

The result is TRUE if IN1 is less
than all other arguments.

Example:
TRUE = (3 < 6);

ST: Use operator:

OUT:= IN1 < IN2;
Only two arguments are allowed.
Implementation with logical
combination of multiple
comparisons:

OUT := (IN1 < IN2) AND
(IN1 < IN3);

Any_
Elementary
Any_
Elementary

Bool

NE:
Comparison of inequality

The result is TRUE if IN1 is not
equal to N1.

Example:
TRUE = ('Text 1' <> 'Text 2');

ST: Use operator:

OUT:= IN1 <> IN2;

ibaLogic-V4 Manual

Issue 4.2.4 295

19.11 Counter

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool
Bool
Int

Bool

Int

CTD:
Count down (Downwards counter)

When the counter is set with
LOAD = 1 the counter value CV is
set to the initial value PV. With each
rising edge of CD, the counter
value CV is decremented by one.
As soon as the counter output
is CV <= 0, the output is set Q = 1.
The CV output runs down to a
minimum value of -32,768.

ST: cannot be called up

Bool
Bool
Int

Bool

Int

CTU:
Count up (Upwards counter)

With each rising edge of CU, the
counter value CV is incremented by
one.
As soon as the counter output
CV > = count value PV, the
output Q is set to "TRUE". When
"RESET" = 1, the output Q is set to
"FALSE" and the output CV is set to
0. The CV output runs up to a
maximum value of 32767.

ST: cannot be called up

 Manual ibaLogic-V4

296 Issue 4.2.4

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool
Bool
Bool
Bool
Int

Bool

Bool

Int

CTUD:
Counter for counting up and down
Up/Down counter)

With each rising edge of CU, the
counter value "CV" is incremented
by one per sampling time. When the
counter output is "CV" >= count
value "PV", the output is QU = 1
(Flow diagram see"CTU" FB).
When the counter is set with
"LOAD" = 1, the counter value "CV"
is set to the initial value "PV".
With each rising edge of "CD", the
counter value "CV" is decremented
by one. As soon as the counter
output is "CV" <= 0, the output
is "QD" = 1 (Flow diagram see
"CTD" FB).
When the counter is "RESET" = 1,
the counter output is set to 0.

Range of values for "CV":
-32,768 to 32,767

ST: cannot be called up

19.12 Edge Detection

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool

Bool

F_TRIG:
Detecting falling edges

With a falling edge at the
input "CLK", the output Q is set to
"TRUE" for one task cycle.

Start-up behavior:
When the input "CLK", is "FALSE"
at the time of system start-up, the
function block generates a pulse at
the output Q = "TRUE" for a period
of one cycle.

ST: cannot be called up

ibaLogic-V4 Manual

Issue 4.2.4 297

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool

Bool

R_TRIG:
Detecting falling edges

With a rising edge at the
input "CLK", the output Q is set to
"TRUE" for one task cycle.

Start-up behavior:
When the input; "CLK", is "TRUE" at
the time of system start-up, the
function block generates a pulse at
the output Q = "TRUE" for a period
of one cycle.

ST: cannot be called up

19.13 Register

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Dint
Any

Any

DELAY: Time delay feature

The output value "OUT", follows the
input value "VALUE", with a time
delay that is specified by the
"COUNT" input in number of cycles.

When you use the "ARRAY" data
type ("VALUE" and "OUT"), the
block is limited on account of
memory capacity. If the number of
"ARRAY" elements exceeds 64, the
range of values of the time delay
of 65,536 is reduced accordingly.

ST: cannot be called up

Dint
Real
Real

Real

FIFO:
First In First Out - Storage

The output value "OUT", follows the
input value "VALUE", with a time
delay that is specified by the
"COUNT" input in number of cycles.
In addition, the input value is
multiplied with "FACTOR".

ST: cannot be called up

 Manual ibaLogic-V4

298 Issue 4.2.4

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_
Magnitude
Bool
Bool
Any_
Magnitude

Any_Magnitude

REGISTER:
Register memory
The block works with the signal
state and not with the signal edges.

Function table:

Input values Output

SET RESET OUT

0 0 OUTn-1

0 1 RESETVALUE

1 0 VALUE

1 1 VALUE

ST: cannot be called up

Bool

Real

Real
Real
Real
Real
Real
Real
Real
Real
Bool

SHIFT_REGISTER: Shift register
As long as the input
"SET" = "TRUE", the input value,
"VALUE" is shifted by an output Ti
in every task cycle.

Shift, if "SET" = "TRUE"

T0: =
VALUE(Tn) = current cycle
T1: =
VALUE(Tn-1) = previous cycle
T8: =
VALUE(Tn-8] = oldest cycle

where n = task cycle

ST: cannot be called up

19.14 Selection

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_
Elementary
Any_
Elementary
Any_
Elementary

Any_Elementary

LIMIT: Limit value
The input value IN is limited to the
limit values MN (min.) and
MX (max.).

Example:
-0.389 =
limit(-0.4, -0.389, 10.0);
15.3 =
limit(8.9, 17.6, 15.3);

ST:

OUT :=
limit(MN, IN, MX);

Any_
Elementary
Any_
Elementary

Any_
Elementary

MAX: Maximum value

Examples:
0.3 = max(-0.389, 0.3);
12 = max(0, 10, 12, 5);

ST:

OUT :=
max(IN1, IN2, …, INn);

ibaLogic-V4 Manual

Issue 4.2.4 299

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Any_
Elementary
Any_
Elementary

Any_
Elementary

MIN: Minimum value

Examples:
-0.389 = min(-0.389, 0.3);
0 = min(0, 10, 12, 5);

ST:

OUT :=
min(IN1, IN2, …, INn);

Dint
Any
Any

Any

MUX: Multiple selector

Expandable selection block for any
data types. All selection values have
to be of the same data type.
"K" = Selector,
"IN0..IN63" selection values,
"OUT" resulting value.

ST: cannot be called up

Bool
Any_
Elementary
Any_
Elementary

Any_
Elementary

SEL: Selector

Selection (1 out of 2) with binary
signal "G"

Function table:

SEL OUT

0 IN0

1 IN1

Example:
-0.389 = sel(FALSE, -0.389, 0);

ST: Different calls for "REAL" and
"INT" data types, and other data
types are not possible.

ST:

OUT :=
sel_real(G,IN0, IN1);
OUT :=
sel_int(G, IN0,IN2);

 Manual ibaLogic-V4

300 Issue 4.2.4

19.15 Signal Processing

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

One-
dimensional
real array
having a depth
of 2

n

Bool

One one-
dimensional real
array each having
a depth of 2

n-1

CRFFT:
Fast Fourier Transformation with an
imaginary component

There must be a one-dimensional
array of "REAL" type and having
2**n elements at the input "IN".
The output is then always two
arrays of the same type having the
length 2 **(n-1).

Example:
IN  ARRAY [0…2047]
OF REAL
ROUT  ARRAY [0…1023]
OF REAL
IOUT  ARRAY [0…1023]
OF REAL

The FFT evaluation is enabled
when the input,
"TRIGGER" = "TRUE". It is only
then that the block requires
computing time!

This function block delivers the real
part at the output "ROUT" and the
imaginary part at the output, "IOUT",
of an FFT evaluation.

Evaluation mode:
Absolute amplitude, all values in the
array have the same weight
(Rectangular window).

ST: cannot be called up

One-
dimensional
real array
having a depth
of 2

n

Bool

One one-
dimensional real
array each having
a depth of 2

n-1

RFFT: Fast Fourier Transformation

There must be a one-dimensional
array of "REAL" type and
having 2**n elements at the
input "IN".
The output is then always two
arrays of the same type having the
length 2 **(n-1).

Example:
IN  ARRAY [0 … 2047] OF
REAL
OUT  ARRAY [0 … 1023]
OF REAL

The FFT evaluation is enabled
when the input, "TRIGGER" =
"TRUE". Here, too, it is only then
that the block requires computing
time!

This function block delivers the
result of an FFT at the output
according to the evaluation mode:
Absolute amplitude, all values in the
array have the same weight
(Rectangular window).

ST: cannot be called up

ibaLogic-V4 Manual

Issue 4.2.4 301

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool
Real
Real
Any_
Derived

Any_
Derived

SCALE_ARRAY:
As long as the input
"DOCONVERT" = "TRUE", each
element in the input array "IN", is
multiplied with "SCALE" and added
with the value at the "OFFSET"
input.

You then have the scaled array
available at the output "OUT".

ST: cannot be called up

19.16 Specials

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool
Bool
String
Lreal
Lreal
Lreal
Lreal
Lreal
Lreal
Lreal
Lreal

Dint

Usint

Dword

String

Bool

DAT FILE WRITE:
You can use this block to record
signals directly in ibaLogic for
subsequent analysis using the
ibaAnalyzer.

You will find a detailed description
in"DAT_FILE_WRITE (DFW
Function Block), Page 96".

ST: cannot be called up

Bool

Real
Real
Real
Real
Udint
Real

EVALTIMES:
Output of the evaluation data

EVAL_DELTA_TIME =
current cycle time of the task
(in ms)

MAX_DELTA_TIME =
max. cycle time of the task since the
previous start (in ms)

MIN_DELTA_TIME =
minimum cycle time

EVAL_TIME =
time elapsed since the previous
start (in ms)

EVAL_TIME_TICK =
time elapsed since the previous
start in µs

TASK_DURATION =
Evaluation time of the current task.

ST: cannot be called up

Bool
Bool
String
Lreal
Lreal
Lreal
Lreal
Lreal
Lreal
Lreal
Lreal

Lreal

Array [0..8] of
Lreal
String

Int

String

FUZZY_CONTROLLER:
Controller block using fuzzy logic.

You will find a short description in
"FUZZY_CONTROLLER, Page
119".

ST: cannot be called up

 Manual ibaLogic-V4

302 Issue 4.2.4

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Graphical Configuration

Int
Real
Real
Real
Real

Real

GENERATOR:
Function generator for sinusoidal,
rectangular (square wave) and
triangular (saw tooth) signals.

"GENTYPE" =
1 for sinusoidal, 2 for rectangular
(square wave) and 3 for triangular
(saw tooth) signal

"AMPLITUDE" =
Amplitude value; there is only one
value that is evaluated
symmetrically to the X-axis, i. e. it
applies to both positive and
negative values.

"OFFSET" =
Specification of the offset (position
of the X-axis); if you desire a trend
graph in which the value is non-
negative, you must choose the
offset at least as large as the
amplitude.

"PERIOD" =
Specification of the time period in
seconds

"PULSE" (Pulse width) =
specification of the time for the first
pulse in seconds; it is not used for
sinusoidal waveforms. The value
should not be greater than the time
period. For a symmetric signal,
Pulse = Period / 2

The specialty of this block is that
you also have the option of
configuring the signals graphically.
You can select this interface by
double clicking on the block. You
can these use the mouse to set
values in the graphical display.

ST: cannot be called up

Int

Real

GET_TASK_INFO:
Function to extract task information
corresponding to the "INFO_TYPE"
parameter.

"INFO_TYPE" =
0: EvalDeltaTime,
1: EvalTime,
2: LastTaskDuration

ST: cannot be called up

String

String

SHOWSTRING:
Display element for displaying
strings.

ST: cannot be called up

ibaLogic-V4 Manual

Issue 4.2.4 303

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Real
Real

Real
Dint

SLIDER: slide controller

Depending on the position of the
slider, this function block delivers a
value at its output "OUT", where the
value lies between the limits of the
input specifications (Minimum and
maximum value). The inputs are
preset by default to 0 and 1, but can
be modified as required. (Double
click on the module and adjust the
default values)
The output "IOUT", delivers the
relative positional value of the slider
in steps of one-
thousandth (0 ... 1000).

The outputs are set only when the
mouse button releases the slider.

If the slider pointer is marked, it can
also be moved using the cursor
keys  und  .

ST: cannot be called up

Bool

Bool

SWITCH: Switch

You have to click with the left
mouse button on the "OFF" icon to
switch on or off ("toggle").

In conjunction with the input, you
have an "OR" function between the
switch position and the input.

Truth table:

SWITCH VAL OUT

ON FALSE TRUE

ON TRUE TRUE

OFF FALSE FALSE

OFF TRUE TRUE

ST: cannot be called up

 Manual ibaLogic-V4

304 Issue 4.2.4

19.17 Timer

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Dint
Dint
Dint
Dint
Dint
Dint
Dint

Udint

MAKE_UTC_TIME:
Coding the UTC time8

The function block generates the
UTC time at the output "TM" from
the input variables "YEAR",
"MONTH", "DAY", "HOUR",
"MINUTE" and "SECOND".

The local timezone9 isnot taken into
consideration. You can specify the
Daylight Savings Time at the
"DST" input.

Example:
27.06.2010/08:10:30 in the
timezone GMT+01  TM
 = 1277626230

ST: cannot be called up

Udint
Bool

Udint

SET_UTC_TIME: Set the UTC time

The function block set the "UTC
System Time" of the ibaLogic
platform (Windows PC or PADU-S-
IT) to the value at the "TMIN" input
when the input "SET" = "TRUE".

The local time zone and the
Daylight Savings Time (DST) is not
taken into consideration.

ST: cannot be called up

Udint

Udint
Dint
Dint
Dint
Dint
Dint
Dint
Dint

SPLIT_UTC_TIME:
Decoding of UTC time in GMT.

The function block generates the
output variables, "YEAR",
"MONTH", "DAY", "HOUR",
"MINUTE" and "SECOND" from the
UTC time at the TM input.

The local time zone is not taken into
consideration. The Daylight Savings
Time is displayed at the
"DST" output.

ST: cannot be called up

8 The UTC time (Universal Time Coordinated) contains the time in seconds since 01.01.1970, 00:00
midnight, related to GMT+00.
9 The information regarding the time zone and summer time (DST) is taken over from the Operating
System settings under Windows XP or Windows CE.

ibaLogic-V4 Manual

Issue 4.2.4 305

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Udint

Udint
Dint
Dint
Dint
Dint
Dint
Dint
Dint

SPLIT_LOCAL_TIME:
Decoding of UTC time in local
time.

The function block generates the
output variables "YEAR", "MONTH",
"DAY", "HOUR", "MINUTE" and
"SECOND" from the UTC time at
the TM input.

The local time zone is not taken into
consideration. The Daylight Savings
Time is displayed at the
"DST" output.

ST: cannot be called up

Bool
Time

Bool
Time

TOF: Off delay (Switch off time
delay)

If the input "IN", is "TRUE", the
output "Q", is set to "TRUE" without
any time delay. The falling edge at
the "IN" input starts the time
delay PT. After the delay time has
elapsed, the output "Q", is set to
"FALSE". The output "Q", remains
unchanged if the switch-off time of
"IN" is shorter than the time delay.
The output "ET", indicates the time
that has already elapsed.

ST: cannot be called up

Bool
Time

Bool
Time

TON: On delay (Switch on time
delay)

The rising edge at the "IN" input
starts the time delay PT. After the
delay time has elapsed, the
output "Q", is set to "FALSE". A
"FALSE" signal at the input "IN", is
immediately transferred to the
output "Q". The output "Q", is not
set if the switch-on time of "IN" is
shorter than the time delay. The
output "ET", indicates the time that
has already elapsed.

ST: cannot be called up

 Manual ibaLogic-V4

306 Issue 4.2.4

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool
Time

Bool
Time

TP: Timer pulse (Pulse extension)

The rising edge at the input "IN",
sets the output "Q", for the pulse
time PT to "TRUE". The output "Q",
cannot be reset during the timer
pulse. The output "ET", indicates
the time that has already elapsed.

ST: cannot be called up

Udint

String

UTCTIMETOSTRING:
Converts UTC time in a formatted
string.

ST:

OUT :=
UTCTIMETOSTRING(IN);

19.18 Type Conversion

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool

Int

BITS_TO_INT:
Converts 16 bits to an integer value

Example:
10613 =
2#0010_1001_0111_0101,
(Bit15 ………..………….. Bit0)

ST: cannot be called up

ibaLogic-V4 Manual

Issue 4.2.4 307

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Bool
Uint
Uint
Any_
Derived

Any_
Derived

Bool

COLLECT_ARRAY
You can use this block to transfer
sections of one array to another.

"TAKEOVER":
As long as this input is "TRUE",
data is transferred to the output
array.

"OFFSET":
This specifies the element in the
input array from which data needs
to be copied.

"VALID_SIZE":
Number of elements to be copied.

"IN":
Input array of any size.

"OUT":
Output array

"BUFFER_FULL":
Output array is full, and data has to
be read out.

ST: cannot be called up

Dword

String
String
String
String
String

DWORD_TO_CHAR
Conversion of a "DWORD" to four
separate characters of
"STRING" type

16#22645240 = ' @', 'R', 'd', '"'

ST: cannot be called up within ST

Int

Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool
Bool

INT_TO_BITS:
Converts an integer value to 16 bits

(Inverse function of BITS_TO_INT)

ST: cannot be called up

 Manual ibaLogic-V4

308 Issue 4.2.4

19.18.1 Limiting Converter

These conversion blocks take on a special role, since, prior to the type conversion,
they limit the range of values of the input type to the range of values of the output type.
The following example illustrates the difference with respect to a standard converter.

Limit converter: limit:dint_to int(57700) delivers the result: 32767

(First, the output value is limited to the range of values (-32768 … 32767), and then
type conversion is carried out).

Standard
converter:

dint_to_int(577000) delivers the result: -12824

(The 16 lower order bits are considered and these are converted, whereby, naturally,
the highest order bit (Bit 15) is interpreted as a sign bit.)

We recommend that you use a limiting converter if the range of values of the target
type is smaller than the range of values of the source type. This concerns the following
conversions:

INT UINT DINT UDINT REAL LREAL

INT  UINT
INT  SINT
INT  USINT

UNIT  INT
UINT  SINT
UINT  USINT

DINT  INT
DINT  UDINT
DINT  UINT
DINT  SINT
DINT  USINT

UDINT  DINT
UDINT  INT
UDINT  UINT
UINT  SINT
UINT  USINT

REAL  DINT
REAL  INT
REAL  UDINT
REAL  UINT
REAL  SINT
REAL  USINT

LREAL  DINT
LREAL  INT
LREAL  REAL
LREAL  UDINT
LREAL  UINT
LREAL  SINT
LREAL  USINT

In Structured Text, the limiting converters are provided by the functions:
"limit_source_type_to_target_type"

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Dint

Int

LIMIT_DINT_TO_INT:

Example:
-577000 => -32768;

ST:

OUT:=
limit_dint_to_int(IN);

Dint

Udint

LIMIT_DINT_TO_UDINT:

Example:
-216000 => 0;

ST:

OUT:=
limit_dint_to_udint(IN);

Dint

Uint

LIMIT_DINT_TO_UINT:

Example:
75623 => 65535

ST:

OUT:=
limit_dint_to_uint(IN);

ibaLogic-V4 Manual

Issue 4.2.4 309

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Int

Uint

LIMIT_INT_TO_UINT

Example:
-100 => 0

ST:

OUT:=
limit_int_to_uint(IN);

Lreal

Dint

LIMIT_LREAL_TO_DINT:

Example:
2.2 E+09 => 2147483648;

ST:

OUT:=
limit_lreal_to_dint(IN);

Lreal

Int

LIMIT_LREAL_TO_INT:

Example:
248758.0 => 32767

ST:

OUT:=
limit_lreal_to_int(IN);

Lreal

Real

LIMIT_LREAL_TO_REAL

Example:
1E+45 => 3.402823466 E+38

ST:

OUT:=
limit_lreal_to_real(IN);

Lreal

Udint

LIMIT_LREAL_TO_UDINT:

Example:-1 E+12 => 0;

ST:

OUT:=
limit_lreal_to_udint
(IN);

Lreal

Uint

LIMIT_LREAL_TO_UINT:

Example:-3 E+12 => 0;

ST:

OUT:=
limit_lreal_to_uint(IN);

Real

Dint

LIMIT_REAL_TO_DINT:

Example:
-2.2 E+09 => -2147483648;

ST:

OUT:=
limit_real_to_dint(IN);

Real

Int

LIMIT_REAL_TO_INT:

Example: 248758.0 => 32767;

ST:

OUT:=
limit_real_to_int(IN);

 Manual ibaLogic-V4

310 Issue 4.2.4

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Real

Udint

LIMIT_REAL_TO_UDINT:

Example:
-4000.0 => 0

ST:

OUT:=
limit_real_to_udint(IN);

Real

Uint

LIMIT_REAL_TO_UINT:

Example:
1*E+12 => 65535;

ST:

OUT:=
limit_real_to_uint(IN);

Udint

Dint

LIMIT_UDINT_TO_DINT:

Example:
3123456789 => 2147483647;

ST:

OUT:=
limit_udint_to_dint(IN);

Udint

Int

LIMIT_UDINT_T_INT:

Example:
558900 => 32767

ST:

OUT:=
limit_udint_to_int(IN);

Udint

Uint

LIMIT_UDINT_TO_UINT:

Example:
256345 => 65535

ST:

OUT:=
limit_udint_to_uint(IN);

Uint

Int

LIMIT_UINT_TO_INT:

Example: 48000 => 32767;

ST:

OUT:=
limit_uint_to_int(IN);

ibaLogic-V4 Manual

Issue 4.2.4 311

19.18.2 Scaling Converter

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Int
Int
Lreal
Int
Lreal

Lreal

SCALE_INT_TO_LREAL:
This module converts an
"INTEGER" value to an "LREAL"
value and scales it linearly.

Application:
Conversion of an analog input
(Integer value -32768 … 32767) to a
physical parameter
e. g. +/- 10 Volt.

IN:
Input value (Analog input)
X0, X1: Range of values of input
value (Int)
Y0, Y1: Range of values
Target parameter (Lreal)

Example:
4  0.0013733119 V
X0, X1 = -32768 / +32767
Y0, Y1 = -10.0 / + 10.0
IN = 4
OUT = 0.0013733119

Implementation (Type conversions
have been omitted for the sake of
clarity):

dx := x1-x0;
if (dx <> 0.0)
then
 aa := (y1 - y0) / dx;
 bb := y0 - aa*x0;
 out = aa*in + bb;
end_if;
ST: cannot be called up

Important note:
Since the integer range of values is
not symmetric in principle, a 0 at the
input leads to a 0 at the output.
Since this always leads to
misinterpretations, iba AG
recommends that you specify a
symmetric range of values for the
input (-32,767/+ 32,767).

 Manual ibaLogic-V4

312 Issue 4.2.4

Input
data type

Block design Output
data type

Explanation, example,
ST syntax

Lreal
Lreal
Int
Lreal
Int

Int

SCALE_LREAL_TO_INT:
This module converts an "LREAL"
value to an "INTEGER" value and
scales it linearly.

Application: Conversion of physical
parameter
(e. g. +/- 10 Volt) to an analog
output
(Integer value -32,768 ... 32,767)

Example:
4.6 V  15072
X0, X1 = physical range (-/+ 10 V)
Y0, Y1 = range of values INT

Implementation (Type conversions
have been omitted for the sake of
clarity):

dx := x1-x0;
if (dx <> 0.0)
then
 aa := (y1 - y0) / dx;
 bb := y0 - aa*x0;
 out := aa*in + bb;
end_if;
ST: cannot be called up

Any_Array
Byte

Any_Struct
Int

ARRAY_TO_STRUCT:
Creates a structure from any array.
SIZE includes the effectively used
data size.

SWAP sets the byte swap:
16#00 Off,
16#01 depending on data type
(AB CDEF  BA FEDC),
16#02 2 bytes (ABCD  BADC),
16#04 4 bytes (ABCD  DCBA).

ST: cannot be called up

Any_Struct
Byte

Any_Array

Int

STRUCT_TO_ARRAY:
Creates an array from any structure.
(Parameter see
ARRAY_TO_STRUCT)

ST: cannot be called up

ibaLogic-V4 Manual

Issue 4.2.4 313

19.18.3 Standard Converter

All standard conversion blocks are combined into one block. As soon as you drag this
block and drop it in the design area, a selection dialog box appears with which you can
define the input and output data types.

Conversion rules:

 For target type "BOOL", the result is "FALSE" if the input has the value 0, 0.0, 16#0
or T#0ms, otherwise, "TRUE" is output.

 For conversion of real data types to integer data types, the values are converted
numerically and rounded up or off in accordance with the rules of arithmetic. The
values are not limited.
Example: 82600.0(REAL)  82600(DINT)  17064(INT)

 Conversion from "INTEGER" and "WORD" data types takes place using type
conversion without changing the bit pattern. Any limiting required is not carried out
and the higher orders bits are truncated.

 For real data types to "WORD" data types, the value is first converted to "DINT"
numerically and then only data type conversion is done without changing the bit
pattern.

If you join two connectors of different data types with one another, a suitable
conversion block is automatically created, provided that conversion is possible. For
more information, please refer to "Converter, Page 162".

Input data
type

Block design Output
data type

Explanation, example,
ST syntax

 TYPE TO TYPE:As soon as you
drag and drop this block in the
design area, a selection dialog box
appears with which you can define
the input and output data type.

ST: Function name is formed from
Source_type_to_Target_type, e.g.

OUT := real_to_int(IN);

Note

Conversion to TIME:

Integer values are interpreted as millisecond values.

Real values are interpreted as seconds values.

Example:

An integer value of 4,711 hence, yields 4,177 seconds.

A real value of 4711.0 yields 4711 seconds
(that is, 1 h, 18 min and 31 sec).

 Manual ibaLogic-V4

314 Issue 4.2.4

20 Error Codes

20.1 DAT_FILE_WRITE Error Codes

Error Code Meaning

16#FFFFFFF1 No PP_COMMAND specified!

16#FFFFFFF2 Failed to execute PP_COMMAND!

16#FFFFFFF3 Failed to start PP_COMMAND!

16#FFFFFFF4 Failed to close file xxxx.dat

16#FFFFFFF5 Sample Time is set to 0.0. Please set a valid sample time!

16#FFFFFFF6 DatfileWrite Configuration exceeds allowed signals in Dongle

16#FFFFFFF7 Failed to write data into file. Please check disk space

16#FFFFFFF8 Failed to create file. Please check file name and disk space!

16#FFFFFFF9 Could not find Data handlers for module x

16#FFFFFFFA Error collecting Data handlers for module x

16#FFFFFFFB Could not find Data handlers

16#FFFFFFFC Could not find Module configuration data for module x

16#FFFFFFFD Error reading Module configuration data for module x

16#FFFFFFFE No Module Configuration defined!

16#FFFFFFFF Could not find Configuration data

20.2 TCPIP_SENDRECV Error Codes

Error Code Meaning Solution suggested

HEX:
16#0000271d

DEZ:
10013

Permission denied - Access to socket forbidden by
access permissions.

Please login with a
username that has
administrator privileges.

16#00002740

10048

Address already in use - Only one usage of each socket
address is permitted.

The address / port is
already used.

16#00002741

10049

Cannot assign requested address - The requested
address is not valid in its context.

16#0000273f

10047

Address family not supported by protocol family - An
address incompatible with the requested protocol was
used.

16#00002735

10037

Operation already in progress - An operation was
attempted on a non-blocking socket that already had an
operation in progress.

16#00002745

10053

Software caused connection abort - An established
connection was aborted by host machine.

16#0000274d

10061

Connection refused - No connection could be made
because the target machine actively refused it.

ibaLogic-V4 Manual

Issue 4.2.4 315

Error Code Meaning Solution suggested

16#00002746

10054

Connection reset by peer - An existing connection was
forcibly closed by the remote host.

16#00002737

10039

Destination address required - A required address was
omitted from an operation on a socket.

16#0000271e

10014

Bad address - The system detected an invalid pointer
address in attempting to use a pointer argument of a call.

16#00002750

10064

Host is down - A socket operation failed because the
destination host was down.

16#00002751

10065

No route to host - A socket operation was attempted to
an unreachable host.

16#00002734

10036

Operation now in progress - A blocking operation is
currently executing.

16#00002714

10004

Interrupted function call - A blocking operation was
interrupted by a call to WSACancelBlockingCall.

16#00002726

10022

Invalid argument - Some invalid argument was supplied.

16#00002748

10056

Socket is already connected - A connect request was
made on an already connected socket.

16#00002728

10024

Too many open files - Too many open sockets.

16#00002738

10040

Message too long - A message sent to socket was larger
than the internal message buffer or the buffer used to
receive was smaller than the datagram itself.

Reduce the length of the
bytes to be transmitted.

16#00002742

10050

Network is down - A socket operation encountered a
dead network.

16#00002744

10052

Network dropped connection on reset - The connection
has been broken due to keep-alive activity detecting a
failure while the operation was in progress.

16#00002743

10051

Network is unreachable - A socket operation was
attempted to an unreachable network.

16#00002747

10055

No buffer space available - An operation could not be
performed because the system lacked sufficient buffer
space or because a queue was full.

16#0000273°

10042

Bad protocol option - An unknown, invalid or
unsupported option or level was specified in a getsockopt
or setsockopt call.

16#00002749

10057

Socket is not connected - A request to send or receive
data was disallowed because the socket is not
connected.

16#00002736

10038

Socket operation on non-socket - An operation was
attempted on something that is not a socket.

16#0000273d

10045

Operation not supported - The attempted operation is not
supported for the type of object referenced.

16#0000273e

10046

Protocol family not supported - The protocol family has
not been configured into the system or no implemen\-
tation for it exists.

 Manual ibaLogic-V4

316 Issue 4.2.4

Error Code Meaning Solution suggested

16#00002753

10067

Too many processes - A Windows Sockets
implementation may have a limit on the number of
applications that may use it simultaneously.

16#0000273b

10043

Protocol not supported - The requested protocol has not
been configured into the system, or no implementation
for it exists.

16#00002739

10041

Protocol wrong type for socket - A protocol was specified
in the socket function call that does not support the
semantics of the socket type requested.

16#0000274a

10058

Cannot send after socket shutdown - A request to send
or receive data was disallowed because the socket had
already been shut down.

16#0000273c

10044

Socket type not supported - The support for the specified
socket type does not exist in this address family.

16#0000274c

10060

Connection timed out - A connection attempt failed or
established connection failed because connected host
has failed to respond.

16#0000277d

10109

Class type not found - The specified class was not found.

16#0000277a

10106

Unable to initialize a service provider - Either a service
provider's DLL could not be loaded or the
provider's WSPStartup/NSPStartup function failed.

16#00002af9

11001

Host not found - No such host is known.

16#0000276d

10093

Successful WSAStartup not yet performed - Either the
application hasn't called WSAStartup or WSAStartup
failed.

16#00002afc

11004

Valid name, no data record of requested type - The
requested name is valid and was found in the database,
but it does not have the correct associated data being
resolved for.

16#00002afb

11003

This is a non-recoverable error - This indicates some sort
of non-recoverable error occurred during a database
lookup.

16#0000277b

10107

System call failure - Returned when a system call that
should never fail does.

16#0000276b

10091

Network subsystem is unavailable - The underlying
system to provide network services is currently
unavailable.

16#00002afa

11002

Non-authoritative host not found - Temporary error
during hostname resolution, the local server did not
receive a response from an authoritative server.

16#0000276a

10092

WINSOCK.DLL version out of range - The current
Windows Sockets implementation does not support the
Windows Sockets specification version requested by the
application.

16#00002775

10101

Graceful shutdown in progress - The remote party has
initiated a graceful shutdown sequence.

16#00002778

10104

Invalid procedure table from service provider - A service
provider returned a bogus proc table to WS2_32.DLL.

ibaLogic-V4 Manual

Issue 4.2.4 317

Error Code Meaning Solution suggested

16#00002779

10105

Invalid service provider version number - A service
provider returned a version number other than 2.0.

16#00002733

10035

Resource temporarily unavailable - Operation should be
retried later.

16#00000006

6

Specified event object handle is invalid - An application
attempts to use an event object, but the specified handle
is not valid.

16#00000008

8

Insufficient memory available - The Win32 Socket
function is indicating a lack of required memory
resources.

16#00000057

87

One or more parameters are invalid - The Win32 Socket
function is indicating a problem with one or more
parameters.

16#000003e3

995

Overlapped operation aborted - An overlapped operation
was canceled due to the closure of the socket.

16#000003e4

996

Overlapped I/O event object not in signaled state - The
application has tried to determine the status of an
overlapped operation which is not yet completed.

16#000003e5

997

Overlapped operations will complete later - The
application has initiated an overlapped operation which
cannot be completed immediately.

 Manual ibaLogic-V4

318 Issue 4.2.4

21 Characteristics of TCP/IP

21.1 Number of TCP/IP connections possible

Note

The number of TCP/IP connections possible in ibaLogic depends on the system
settings "TcpNumConnections".

An excerpt of Microsoft for this:

"TcpNumConnections

Registry:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Keyname: TcpNumConnections

Data type Range Default value

REG_DWORD 0x0 – 0xFFFFFE 0

Description

Determines the maximum number of connections that TCP can have open simultane-
ously. If the value of this entry is 0, you cannot establish any connections.

Note Image Note

Windows does not add this entry to the registry. You can add it by editing the registry
or by using a program that edits the registry."

LINKS

TcpNumConnections (http://technet.microsoft.com/en-us/library/cc938216.aspx)

TCP/IP - Maximum number (http://www.windowspage.de/tipps/021202.html) of
simultaneously open connections

21.2 Delayed Acknowledge Problem

Problem

Measurements made by automation equipment using TCP/IP do not work with cycle
times < 200 ms.

Error pattern: Sequence error, incomplete telegrams and different lengths received.

http://technet.microsoft.com/en-us/library/cc938216.aspx�
http://www.windowspage.de/tipps/021202.html�

ibaLogic-V4 Manual

Issue 4.2.4 319

Cause

There are different variants of handling 'Acknowledge' in the TCP/IP protocol:

1. The standard WinSocket works in accordance with RFC1122 using the "delayed
acknowledge" mechanism. This states that the acknowledge is delayed until other
telegrams arrive in order to acknowledge them jointly. If no other telegrams arrive,
the ACK telegram is sent latest after 200 ms (depending on the socket).

According to the TCP/IP standard this is possible since with data flow control using
"Sliding Window" (Parameter Win = nnnn) the receiver specifies the number of
bytes that it can receive without sending an acknowledgment.

2. Some controllers do not accept this response, but instead, wait for an
acknowledgment after each data telegram. If this does not arrive within a specific
time period (200 ms), it repeats the telegram and possibly also adds new data to be
transmitted. This leads to an error in the receiver, since the older telegram was
received correctly.

Remedy

The "delayed acknowledge" must be disabled in Windows with the help of the
parameter entry in the Windows registry:

"TcpAckFrequency" REG_DWORD = 1;

The parameter is not present by default and has to be entered in this path:

"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
Interfaces\{InterfaceGUID}"

Note

You must select the correct interface. You can see which one is the correct one,
for example, from the IP addresses set currently.

See also the following MS

New registration entry (http://support.microsoft.com/kb/328890) for checking the TCP
confirmation response in Windows XP and Windows Server 2003

Windows XP:

figure 148: Windows XP Registry

http://support.microsoft.com/kb/328890�

 Manual ibaLogic-V4

320 Issue 4.2.4

22 Key Combinations

22.1 Client

Key combination Explanation

<Ctrl> + <P> Print

<Ctrl> + <Z> Undo

<Ctrl> + <Y> Repeat

<Ctrl> + <C> Copy

<Ctrl> + <V> Paste

<Ctrl> + <A> Select all

 Remove

<F5> Start evaluation

<Shift> + <F5> Stop evaluation

<Ctrl> + <Shift> + <F> Add – new function block

<Ctrl> + <Shift> + <M> Add – new macro block

<Ctrl> + <Shift> + <I> Add – new intra-page connector

<Ctrl> + <Shift> + <T> Add – new off-task connector

<Ctrl> + <Shift> + <C> Add – new comment

<Ctrl> + <Shift> + <S> Display off-task connectors

<F1> Help

22.2 Mouse Functions in the Programming Field

Key combination Explanation

Left mouse button click + <Shift>: Mark multiple elements

Left mouse button click + <Ctrl> Switch the marking

Scroll wheel + <Shift>: Move visible section to the left / right.

Scroll wheel + <Ctrl>: Zoom in / zoom out

Scroll wheel + <Alt> Move visible section up / down.

<Ctrl> + connector input or output Create IPC

Drag & Drop + <Alt> You can drag signals by keeping the <Alt> button pressed
from a connector and drop them into the ibaPDA Express
window.

ibaLogic-V4 Manual

Issue 4.2.4 321

22.3 ibaPDA Express

Key combination Explanation

<F6> (Switch) Starts continuous display with the current time point.

Active, when "Stop scrolling" is pressed.

<F6> (Switch) Stop the continuous display. After pressing this, a ruler appears in
graphs that can be moved with the mouse and with which the curves
can be measured. The signal values are displayed in the legend. You
can move the X-axis using the mouse. In this manner, you can browse
values from the past.

Active, when the display is on.

<F5> "Auto scale"

<F3> Active only when the display has been zoomed. Return to the previous
zoom factor (reduce).

<F4> Active only when the display has been zoomed. Return to the initial
(automatic) display.

<F10> Exit from the full screen mode.

 Manual ibaLogic-V4

322 Issue 4.2.4

23 Character tables

ibalogic uses simplified Hex coding.
Thus, the first 256 Unicode characters (U+0000 to U+00FF) can be displayed.

Standard ASCII character table ($00 - $7F)

ibaLogic-V4 Manual

Issue 4.2.4 323

Extended character table ($80 - $FF)

 Manual ibaLogic-V4

324 Issue 4.2.4

24 Index of Abbreviations

Abbreviation German English

ASCII Zeichenkodierung American Standard Code for
Information Interchange

AWL Anweisungsliste Statement List

CE Übereinstimmung mit EU-Richtlinien FR.: Conformité Européenne

CFC Funktionsblockdiagramm Continuous Function Chart

CPU Prozessor Central Processing Unit

CR Wagenrücklauf Carriage Return

CSV Comma Separated Values or
Character Separated Values

DA Datenzugriff Data Access

DCOM Distributed Component Object Model

DFW DAT_FILE_WRITE

DIN Deutsches Institut für Normung

DLL Dynamische Verbindungsbibliothek Dynamic Link Library

E/A Eingang/Ausgang INPUT/OUTPUT

FB Funktionsbaustein Function Block

FBD Funktionsblockdiagramm Function Block Diagram

FFT Fast Fourier Transformation

FOB Lichtwellenleiterkarte Fiber optical board

FUP Funktionsplan Function Chart

GDM Global Data Memory

GMT Greenwich Mean Time

GSD Gerätestammdaten-Datei (Profibus) Generic Station Description

HMI Bedien-Beobachten-System Human Machine Interface

HW Hardware Hardware

I/O Eingang/Ausgang Input/Output

IEC ein Normungsgremium für Elektrotechnik International Electrotechnical Commission

IL Anweisungsliste Instruction List

IP Internet-Protokoll Internet Protocol

IPC Intra-Page-Konnektor Intra-page connector

KOP Kontaktplan

LAD Ladder Diagram

LF Zeilenvorschub Line Feed

FOC Lichtwellenleiter Fiber optical conductor

MB Makroblock Macro Block

MDAC Microsoft Data Access Components

MS SQL Microsoft Structured Query Language

NL Zeilenvorschub Newline

OLE Objekt-Verknüpfung und -Einbettung Object linking and embedding

OPC Datenaustauschprotokoll (Schnittstelle) OLE for Process Control

OTC Off-Task-Konnektor Off Task Connector

PAC Programmierbare Automatisierungseinheit Programmable automation controller

PADU Parallel-Analog-Digital-Umsetzer (Varianten:
PADU-S, PADU-S-IT)

Parallel analog digital unit

ibaLogic-V4 Manual

Issue 4.2.4 325

Abbreviation German English

PC Einzelplatzrechner Personal Computer

PCI PC-Bussystem Peripheral Component Interconnect

PDA Prozess-Daten-Aufzeichnung Process data acquisition

PLC Siehe SPS Programmable Logic Controller

PMAC Programmierbare Mess- und
Automatisierungseinheit

Programmable Measurement and Automation
Controller

RAM Arbeitsspeicher Random Access Memory

RFM Reflective Memory

SD SIMADYN D SIMADYN D

SPS Speicherprogrammierbare Steuerung See PLC

SST Profibuskarte

ST Strukturierter Text Structured Text

STL Anweisungsliste Statement List

SW Software Software

Tab Tabulator Tabulator

TCP/IP Netzwerk-Protokoll Transmission Control Protocol/Internet Protocol

TDC Automatisierungssystem (Siemens)

UCODE Bytecode

USB Universal Serial Bus

UTC koordinierte Weltzeit Universal Time Coordinated

WDM Windows Driver Model

XML Extensible Markup Language

XP Windows XP Windows XP

 Manual ibaLogic-V4

326

25 Classified Index

A

Access synchronization 68
Application 32

Comments 34
Data types 34
Function blocks 33
Graphics Programming 34
ibaPDA Express 35
Program Elements 33
Structure 32
Task / Program Properties 32

Autostart 47, 50

B

Blocks 90
export 93
import 94
manage 93
remove 95
use 91

C

Circuit
Connect 258
Switch online 256
Test 257

Comments 164
Compiler 136
Configuring the client port 41
Connect 169
Connection lines

establish 154
modify 155

Converter 162

D

DAT_FILE_WRITE
Error Codes 314
Mode

Buffered 271
Unbuffered 267

Sample project 267
Data base scripts

manage 46
Data Type

delete 142
export 143
group 139

during the creation of a function block. 141
In the global library 141
Under the project 141

import 144
manage 142
names 142
use 144

during the creation of a function block. 144
User 144

Data Type: 145, 146, 148, 149

Data types 139
derived 278
generic 279
Standard 278

Database
Configure connection 42
Configure the interface 44
reset 216
restore 214
save 210

manually 210
Database Management 210
Debugging 217, 237

Compilation errors 238
Errors in user-defined function blocks 237
Evaluation Order 237
Incorrect signal trends 237
Program errors 237

Define Group 81
Definition 58
Definition name 124
Definitions 59
Disconnect 169
DLL

Descriptions 137
establish 136
Integration 137
Notes 137
Prerequisites 137
Source files 137

E

Error Codes
DAT_FILE_WRITE 314
TCPIP_SENDRECV 314

Evaluation sequence 60
Rules 60

Events Window 68
All Events 69
Console View 69
Local Events 69
Server events 69

F

FOB cards
Buffered Mode 192
FOB-4io-S card 186
iba-FOB-io-S card 182

Function block 123
Analytical Functions 282
Arithmetical Functions

Bistable 288
Bit String 289
Bitwise_Boolean 290
Character String 291
Communication 292
Comparison 293
Counter 295
Edge Detection 296
Miscellaneous 286
Register 297
Selection 298

ibaLogic-V4 Manual

 327

Signal Processing 300
Specials 301
Timer 304
Trigonometric 285

complex 96
Data Types 280
Function diagram display 280
General Settings 124
Place 252
Set parameters 255
Standard 96, 280
Type Conversion 306

Scaling Converter 311
user-specific 123

G

Graphical Connections
Connection lines 154
Connector types 154

H

Hardware configuration
Driver restart 180
Interrupt source 180
Measurement 180
Soft PLC 180
Time base 180
Turbo mode 180
Watchdog 180

Hierarchy 60

I

I/O configurator 175
Assign signals 175
Hardware configuration 175
Input / output resources 175

ibaLogic
Areas of application 25

Automation 25
PLC co-processor 25
Signal management 25
Simulator 25

Components 27
ibaLogic Client 27
ibaLogic Server 27
OPC Server 27
Runtime system (PMAC) 27

Connectivity 36
Identification 13
License Activation 16
Profibus master 196

Card settings 196
Configuration 196

Profibus slave 195
Card settings 195

Proper Use 13
Release notes 13
Software 24

ibaLogic Client 54
<Read write> / <Read only> button 68
Definitions 59
Evaluation sequence 60

Events Window 68
All Events 69
Console View 69
Local Events 69
Server events 69

Hierarchy 60
Instances 58
Menu bar 55
Navigation Area 56
Program Designer 62
Programming Environment 54
start 54, 250
Toolbar 55
User Interface 55
Workspace 70
Workspace Explorer 57

ibaLogic Server 37
Configuring the client port 41
Configuring the Database Connections 42
Configuring the Database Interface 44
Data base scripts 46
Function overview 37
General Settings 49
Language 52
PMAC settings 50
Select SQL server 45
Setting 41
start 38, 250
Status bar 53
User interface 40

ibaLogic Server: 47
ibaLogic Software

Measurement &
Condition monitoring 25

ibaPDA
Toolbar 228

ibaPDA Express 217
Color signal 220
Extended Functionality 228
Measured value storage 35
Move Scales 222
Move Signal 219
Remove Graphs 220
Remove Signal 220
Sample exercise 260
Scale Axes 221
Select Signals 218
Trend Graph 218
Trend Graph Properties 224
Zoom Function 223

Input / Output variables
create 153

Input resources 192
Inputs and Outputs

configure 80
Installation 17

Choose components 17
Choose Installation Location 17
Define the start menu folder 17
License agreement 17
Select SQL server 17
Software required 17
System Requirements 17

 Manual ibaLogic-V4

328

Instance 58
Instance name 124
Instances 58
Integrated measurement using ibaPDA Express

 35
Intra-Page Connectors 155

establish 155
Modify name 156
track 156

J

Joiner 163

K

Key Combinations
Client 320
ibaPDA Express 321
Programming field 320

L

Language 52
Link settings 190
Local peripherals 204

M

Macro block 133
combine 134
create 133
expand 135
open 134

Menu bar 55
Mode

Offline 165
Online 165

Modify signal assignment 188
Multi-client operation 27

N

Naming conventions 277
Navigation Area 56

O

Off-Task Connectors 157
Display 161
establish 157
List 161
rename 159
track 160

OPC
Communication 207
Server 207
Set variable parameters 209

Operating modes 31
Buffered mode 31
Buffered Mode 271
Measurement 31, 180, 230
Soft PLC 31, 180, 230
Turbo mode 180
Unbuffered mode 267

OTC
establish 258

Output resources 192

P

PADU-S-IT 178, 204
Card settings 204
Settings 204

PCI Interfaces 190
Card settings 190

Performance Limits 240
PIDT1_CONTROL 107

Example 110
Inputs 109
Outputs 109
Signal trends 110

Platform
configure 172
PADU-S-IT 171, 178
select 174
WinXP 171

Platforms 171
PMAC 165

Settings 50
PMAC memory

delete 168
save 167

Processing modes 31
Program

create 76
names 77
open 77
remove 78

Program analysis 259, 260
Program clarity

Sample exercise 261
Program Creation 90
Program Designer 62

Arrangement of the programming windows63
Arrangement of the Tabs 63
Evaluation context 63
Navigate 65
Program overview 65
Toolbar 63

Program Elements 151
Graphical Connections 154

Programming Environment 54
Programming rules 242
project

create 251
Project 73

create 73
load 75
remove 75
Set Project as Active 74

Project Properties 75

R

RAMP 116
Example 118
Inputs 117
Outputs 117

Read write / Read only 68
Reflective Memory 201

ibaLogic-V4 Manual

 329

Card settings 201
Configuration 201
Parametrization 201

Resources 176
Global System Variables 179
Hardware 178
Hardware configuration 180

Card settings 181
General Settings 180

Software 179
Update Hardware 176

Runtime system 165
Autostart 167, 168
Connect 169
Disconnect 169
start 165
stop 166

S

Sample exercise
Getting started 249
ibaPDAExpress 260
Program clarity 261
Structured Text 262

Sample project
DAT_FILE_WRITE 267

Scientific notation 224
Set operating mode 31
Set processing modes 31
Signal

assign 182
create 81
edit 84
export 86
group 82
import 86
remove 84, 89
use 88

Signal name
define 188
modify 182

SIMADYN D / SIMATIC TDC Connection 199
Card settings 199
Link settings 199

Software Installation 14
Splitter 163
Structured Text

Editor 127
IntelliSense 128
Sample exercise 262
Syntax description 128

Syntax description
Constants 128
Operators 128
Statements 128
Strings 128

System Requirements 14
Hardware 14
Software 15

T

Task 76

create 76
open 77
remove 78

TCPIP_SENDRECV 105
Error Codes 314

Time behavior 217, 230
Toolbar 55

U

User interface
ibaLogic Server 40

User Interface
ibaLogic Client 54

User-defined block
create 92

In the global library 92
Under the project 92

User-defined Data Types 144

V

Views
Definitions 59
Evaluation sequence 60
Hierarchy 60
Instances 58

W

Workspace
close 71
create 70
delete 72
open 71

Workspace Explorer
IEC View 57
Prog view 57
Task view 57

Workspaces 70

 Manual ibaLogic-V4

330 Issue 4.2.4

26 Support and contact

Support

Phone: +49 911 97282-14

Fax: +49 911 97282-33

Email: support@iba-ag.com

Note

If you require support, indicate the serial number (iba-S/N) of the product.

Contact

Headquarters

iba AG
Koenigswarterstr. 44
90762 Fuerth
Germany

Phone: +49 911 97282-0

Fax: +49 911 97282-33

Email: iba@iba-ag.com

Contact: Mr Harald Opel

Regional and Worldwide

For contact data of your regional iba office or representative please refer to our web
site

www.iba-ag.com.

	1 About this manual
	1.1 Target group
	1.2 Notations
	1.3 Used symbols

	2 Introduction
	2.1 Identification
	2.2 Proper Use
	2.3 Release Notes
	2.3.1 Change Log File

	3 Software Installation
	3.1 System Requirements
	3.1.1 Hardware
	3.1.2 Software

	3.2 License Activation
	3.3 Software Installation
	3.3.1 Prerequisite
	3.3.2 Procedure
	3.3.3 Software required
	3.3.4 System requirements
	3.3.5 Choose components
	3.3.6 Choose Installation Location
	3.3.7 Select SQL server
	3.3.8 Complete ibaLogic installation

	4 ibaLogic Software
	4.1 Introduction
	4.2 Areas of Application
	4.3 The ibaLogic Components
	4.3.1 Runtime system (PMAC)
	4.3.2 ibaLogic Server
	4.3.3 ibaLogic Client
	4.3.4 OPC Server

	4.4 Multi-client Operation and other System Configurations
	4.5 Operating and Processing Modes
	4.6 Structure of an ibaLogic application
	4.6.1 Task / Program Properties
	4.6.2 Program Elements
	4.6.2.1 Function blocks
	4.6.2.2 Graphics Programming
	4.6.2.3 Comments
	4.6.2.4 Data types available
	4.6.2.5 Integrated measurement using ibaPDA Express
	4.6.2.6 Measured value storage

	4.7 Connectivity

	5 ibaLogic Server
	5.1 Functional overview of the ibaLogic Server
	5.2 Start ibaLogic Server
	5.3 User Interface – ibaLogic Server
	5.4 ibaLogic Server Setting
	5.4.1 Configuring the Client port
	5.4.2 Configuring the Database Connections
	5.4.2.1 Connect database
	5.4.2.2 Configuring the Database Interface
	5.4.2.3 Select SQL server
	5.4.2.4 Manage Database scripts

	5.4.3 Options
	5.4.3.1 Activate Autostart Server
	5.4.3.2 Configure General ibaLogic Server Options
	5.4.3.3 Settings for the Local PMAC
	5.4.3.4 Language

	5.4.4 Status bar

	6 Programming Environment – ibaLogic Client
	6.1 Start ibaLogic Client
	6.2 User Interface of Programming Environment – Editor
	6.2.1 Menu Bar
	6.2.2 Toolbar
	6.2.3 Navigation Area
	6.2.3.1 Switch Views in Workspace Explorer
	6.2.3.2 Instances
	6.2.3.3 Definitions
	6.2.3.4 Hierarchy
	6.2.3.5 Evaluation Order

	6.2.4 Program Designer
	6.2.5 Arrangement of the Tabs and Programming Windows
	6.2.5.1 Arrange tabs
	6.2.5.2 Arrange programming windows
	6.2.5.3 Navigating in the Program Designer

	6.2.6 Synchronize Access (<Read write>/<Read only> buttons)
	6.2.7 Events Window
	6.2.7.1 Local Events
	6.2.7.2 Server Events
	6.2.7.3 All Events
	6.2.7.4 Console View

	6.3 Workspace
	6.3.1 Create Workspace
	6.3.2 Open workspace
	6.3.3 Close Opened Workspace
	6.3.4 Remove Workspace from the Database

	6.4 Workspace Projects
	6.4.1 Create Project
	6.4.2 Set Project as Active
	6.4.3 Load Project in the Program Designer
	6.4.4 Edit Project Properties
	6.4.5 Remove Project

	6.5 Tasks/Programs
	6.5.1 Create Tasks / Programs
	6.5.2 Open Tasks/Program
	6.5.3 Change Task / Program Properties
	6.5.4 Remove Task / Program
	6.5.5 Import / Export Programs

	6.6 Configure Inputs and Outputs
	6.6.1 Create Signals
	6.6.1.1 Define Group

	6.6.2 Define Signals
	6.6.3 Edit Existing Signals
	6.6.4 Remove Signals
	6.6.5 Export / Import Signals
	6.6.6 Using Signals in the Program
	6.6.7 Remove Signals in the Program

	7 Program Creation
	7.1 Blocks
	7.1.1 Using Blocks
	7.1.2 Create User Blocks
	7.1.2.1 In the Program
	7.1.2.2 Under the project
	7.1.2.3 In the Global Library

	7.1.3 Managing Blocks
	7.1.4 Exporting Blocks
	7.1.5 Importing Blocks
	7.1.6 Removing Blocks

	7.2 Standard Blocks
	7.3 Complex Function Blocks
	7.3.1 DAT_FILE_WRITE (DFW Function Block)
	7.3.1.1 Function Block Edit DFW
	7.3.1.2 "General Configuration" Sub-tab
	7.3.1.3 Sub-tab "Signal configuration"
	7.3.1.4 Generate Storage Structure

	7.3.2 TCPIP_SENDRECV
	7.3.2.1 Inputs
	7.3.2.2 Outputs

	7.3.3 PIDT1_CONTROL
	7.3.3.1 Inputs
	7.3.3.2 Outputs
	7.3.3.3 Details / Signal trends
	7.3.3.4 P component: (Parameter: KP, EN_P)
	7.3.3.5 I component: (Parameters KP, TN, SET, SV, HI and EN_I)
	7.3.3.6 DT1 component: (Parameters KV,T1 and EN_D)
	7.3.3.7 PIDT1 component – Total response

	7.3.4 RAMP
	7.3.4.1 Inputs
	7.3.4.2 Outputs
	7.3.4.3 Example

	7.3.5 FUZZY_CONTROLLER
	7.3.5.1 Inputs
	7.3.5.2 Outputs

	7.4 User-specific Function Blocks
	7.4.1 Function Blocks
	7.4.1.1 General Settings

	7.4.2 Structured Text Editor
	7.4.2.1 IntelliSense
	7.4.2.2 Syntax Description of Structured Text
	7.4.2.3 Operators
	7.4.2.4 Statements
	7.4.2.5 Constants
	7.4.2.6 Strings

	7.4.3 Macro block
	7.4.3.1 Creating a Macro Block
	7.4.3.2 Opening a Macro
	7.4.3.3 Combining existing components into a Macro Block
	7.4.3.4 Expanding a Macro Block

	7.4.4 Creating your own DLLs
	7.4.4.1 Source Files and Descriptions Required
	7.4.4.2 Requirements and Notes
	7.4.4.3 Integrating the DLL into ibaLogic

	7.5 Data types
	7.5.1 Define Data Type
	7.5.1.1 Under the project
	7.5.1.2 In the global library
	7.5.1.3 When creating a Function Block

	7.5.2 Modify Data Type
	7.5.3 Delete Data Type
	7.5.4 Manage Data Type
	7.5.5 Export Data Type
	7.5.6 Import Data Type
	7.5.7 Use Data Type
	7.5.7.1 During the Creation of a Function Block
	7.5.7.2 During the Creation of a Structure Data Type

	7.5.8 User-defined Data Types
	7.5.8.1 DIRECT DERIVED TYPE Group
	7.5.8.2 SUBRANGE TYPE Group
	7.5.8.3 STRING DERIVED TYPE Group
	7.5.8.4 ENUM TYPE Group
	7.5.8.5 ARRAY TYPE Group
	7.5.8.6 STRUCT TYPE Group

	8 Program Elements
	8.1 Create Program Element
	8.2 Mark Program Elements
	8.3 Move Program Element
	8.4 Align Program Elements along an Edge
	8.5 Copy Program Element
	8.6 Delete Program Element
	8.7 Generate Input / Output Variables
	8.8 Graphical Connections
	8.8.1 Direct Connectors
	8.8.1.1 Types of connection lines
	8.8.1.2 Create Direct Connector
	8.8.1.3 Modify Direct Connectors

	8.8.2 Intra-Page Connectors
	8.8.2.1 Create Intra-Page Connectors
	8.8.2.2 Modify IPC Names
	8.8.2.3 Track IPC

	8.8.3 Off-Task Connectors
	8.8.3.1 Create Off-Task Connectors
	Establish a program-independent connection
	OPC Properties
	Rules for creating OTCs

	8.8.3.2 Rename OTC
	8.8.3.3 Track OTCs
	8.8.3.4 List of all OTCs
	8.8.3.5 Display

	8.9 Converters, splitters, joiners
	8.9.1 Converter
	8.9.2 Splitter
	8.9.3 Joiner

	8.10 Comments

	9 PMAC Runtime System
	9.1 Overview of Online and Offline Modes
	9.2 Start Runtime System
	9.3 Stop the Runtime system
	9.4 Runtime System – Autostart
	9.4.1 Save program on the PMAC
	9.4.2 Delete Program on the PMAC

	9.5 Connect/disconnect

	10 Platforms
	10.1 Configuring the Platform
	10.2 Selecting the Platform

	11 IO Configuration
	11.1 Resources
	11.1.1 Hardware Resources
	11.1.2 Software Resources
	11.1.3 Global System Variables

	11.2 Hardware Configuration
	11.2.1 General Settings
	11.2.2 Card Settings

	11.3 Signal assignment
	11.3.1 Method as seen from the hardware
	11.3.1.1 Example: Assignment of all signals of a module of an ibaFOB-io-S card
	11.3.1.2 Example: Assignment of individual signals of an ibaFOB-4i-S or ibaFOB-4o-S card
	11.3.1.3 Change Signal and Group Names

	11.3.2 Procedure as seen from the program
	11.3.2.1 Example: Signals of an ibaFOB-4io-S card (complete module)

	11.3.3 Modify Signal Assignment
	11.3.4 Using externally defined signal names

	11.4 PCI Interfaces (Windows PC)
	11.4.1 Connection to the "iba World"
	11.4.1.1 Card Settings
	11.4.1.2 Link Settings

	11.4.2 Buffered Mode
	11.4.2.1 Applications
	11.4.2.2 Input Resources
	11.4.2.3 Output Resources

	11.4.3 ibaLogic as Profibus Slave
	11.4.3.1 Card Settings
	11.4.3.2 Settings for bus interface 0/1

	11.4.4 ibaLogic as Profibus Master
	11.4.4.1 Brief Description
	11.4.4.2 Card Settings
	11.4.4.3 Configuration
	11.4.4.4 Peculiarities with signal assignment

	11.4.5 SIMADYN D / SIMATIC TDC Connection
	11.4.5.1 Card settings
	11.4.5.2 Link settings
	11.4.5.3 Communication Settings

	11.4.6 Reflective Memory
	11.4.6.1 Brief Description
	11.4.6.2 Card Settings
	11.4.6.3 Configuration
	11.4.6.4 File
	11.4.6.5 Flow of Setting Parameters

	11.5 ibaPADU-S-IT Platform
	11.5.1 Settings

	11.6 TCP/IP Communication
	11.6.1 TCP/IP Connection Settings

	11.7 OPC Communication
	11.7.1 OPC Server
	11.7.2 Setting the OPC Variable Parameters

	12 Database Management
	12.1 Backup Database
	12.1.1 Manual Database Backup
	12.1.2 Automatic Database Backup

	12.2 Restore Database
	12.3 Reset Database

	13 Program Analysis, Debugging and Time behavior
	13.1 ibaPDA Express
	13.1.1 Controlling the Signal Display
	13.1.2 Select Signals
	13.1.3 Move signal
	13.1.4 Mark the signals with color
	13.1.5 Remove Signal from the Display
	13.1.6 Remove Graphs from the Display
	13.1.7 Scale Axes
	13.1.7.1 Auto scaling
	13.1.7.2 Scaling with the mouse
	13.1.7.3 Scaling using the display settings

	13.1.8 Move Scales
	13.1.9 Zoom Function
	13.1.9.1 Zooming in (Enlarge)
	13.1.9.2 Zoom out (Reduce)

	13.1.10 Trend graph Properties
	13.1.10.1 Miscellaneous
	13.1.10.2 Colors
	13.1.10.3 Fonts
	13.1.10.4 Signals
	13.1.10.5 X-axis
	13.1.10.6 Y-axis
	13.1.10.7 Scientific notation
	13.1.10.8 Scaling mode

	13.1.11 Extended Functionality

	13.2 Time behavior
	13.2.1 Evaluation time
	13.2.2 Turbo mode
	13.2.3 Messung
	13.2.4 Soft PLC
	13.2.5 Time considerations with multiple tasks
	13.2.6 Worst-case considerations
	13.2.7 Explanation of the case above
	13.2.8 Task evaluation with time shift

	13.3 Debugging
	13.3.1 Program errors
	13.3.1.1 Errors in user-defined function blocks
	13.3.1.2 Division by 0
	13.3.1.3 Incorrect signal trends
	13.3.1.4 Evaluation sequence

	13.3.2 Compilation errors

	13.4 Performance Limits
	13.4.1 Example

	14 Programming rules
	14.1 Approach for the solution

	15 Uninstall ibaLogic
	16 Practice Examples
	16.1 First Steps - Sample Project
	16.1.1 Sample Exercise Part 1
	16.1.1.1 Task Description
	16.1.1.2 Start ibaLogic Server and ibaLogic Client
	16.1.1.3 Create a New Project
	16.1.1.4 Placing the Test Tools
	16.1.1.5 Placing the evaluation blocks
	16.1.1.6 Connecting the selector block with the test tools
	16.1.1.7 Configuring the slider and generator
	16.1.1.8 Switch the partial connections online
	16.1.1.9 Testing the switch and selector
	16.1.1.10 Connecting the adder
	16.1.1.11 Create an OTC to illustrate the result
	16.1.1.12 Analysis of the circuit

	16.1.2 Sample Exercise Part 2
	16.1.2.1 Program analysis using the ibaPDA Express

	16.1.3 Sample Exercise Part 3
	16.1.3.1 Procedure
	16.1.3.2 Remark

	16.1.4 Sample Exercise Part 4
	16.1.4.1 Procedure
	16.1.4.2 Remark
	16.1.4.3 Result
	16.1.4.4 Remarks

	16.2 DAT_FILE_WRITE Sample Project
	16.2.1 DAT_FILE_WRITE in "Unbuffered" Mode
	16.2.1.1 Step 1: Configure the DFW block
	16.2.1.2 Step 2: Connection of the DFW
	16.2.1.3 Step 3: Create other measure signals
	16.2.1.4 Step 4: Starting the recording
	16.2.1.5 Alternative: Programming Joiner in ST

	16.2.2 DAT_FILE_WRITE in "Buffered Mode"
	16.2.2.1 Step 1: Configuration of the buffered inputs
	16.2.2.2 Step 2: Set the parameters of the DFW module, "General Configuration"
	16.2.2.3 Step 3: Accept the buffered input signals
	16.2.2.4 Step 4: Transfer the data to DAT_FILE_WRITE
	16.2.2.5 Step 5: Wiring (Connecting) the remaining inputs
	16.2.2.6 Step 6: Starting the recording

	17 Naming conventions
	18 Data types
	18.1 Standard data types
	18.2 Derived data types
	18.3 Generic data types

	19 Standard Function Blocks
	19.1 Table interpretation
	19.2 Data types
	19.3 Block type with function diagram display
	19.4 Analytical Functions
	19.5 Arithmetical Functions
	19.5.1 General
	19.5.2 Logarithmic
	19.5.3 Trigonometric
	19.5.4 Miscellaneous

	19.6 Bistable
	19.7 Bit String
	19.7.1 Bit shift
	19.7.2 Bitwise_Boolean

	19.8 Character String
	19.9 Communication
	19.10 Comparison
	19.11 Counter
	19.12 Edge Detection
	19.13 Register
	19.14 Selection
	19.15 Signal Processing
	19.16 Specials
	19.17 Timer
	19.18 Type Conversion
	19.18.1 Limiting Converter
	19.18.2 Scaling Converter
	19.18.3 Standard Converter

	20 Error Codes
	20.1 DAT_FILE_WRITE Error Codes
	20.2 TCPIP_SENDRECV Error Codes

	21 Characteristics of TCP/IP
	21.1 Number of TCP/IP connections possible
	21.2 Delayed Acknowledge Problem

	22 Key Combinations
	22.1 Client
	22.2 Mouse Functions in the Programming Field
	22.3 ibaPDA Express

	23 Character tables
	24 Index of Abbreviations
	25 Classified Index
	26 Support and contact

